Educational Programming
Published Friday, January 20, 2012 1:50 PM
At last, we've woken up to the worrying fact that there just aren't enough good programmers to go around. Instead of aiming to get a generation of students interested in building their own software, education has instead been compelled by successive governments to focus on word processing, presentation graphics, and stultifying vocational work geared to office skills. Something needs to change; the good news is that change may have already started.
Thankfully the current UK government, who were previously expected to be more likely to make Latin compulsory, have listened to cries from industry and done away with rigidly-specified ICT lessons, to replace them with an "open-source' curriculum that returns to schools the decision of what to teach.
Joel Spolsky recently wrote about a New York school that he's supporting - one that will focus on finding students with a passion for coding and nurture them, rather than skimming off the kids with the best grades for a subject that they don't necessarily have any affinity for. If successful, there are plans to roll this model out further. Schools everywhere already have valuable support from organisations like MIT, who have created an excellent resource in their Scratch programming language, and PASS, whose volunteers have been working to engage with students.
There are initiatives in hardware like the Raspberry Pi, a tiny, powerful and ultra-cheap Linux box that's designed to lower the barrier to entry for kids to get started with programming. More importantly, it opens the way to genuinely experimental programming, the sort of thing that produced so many of the great hobbyist programmers of the 80s and 90s. It plugs directly into a TV, and supports USB inputs so that it allows anyone to get set up for very little outlay (the highest-spec version of the machine costs only $35), which will hopefully also make it attractive to schools that would otherwise struggle to buy much dedicated programming hardware.
Beyond the obvious benefit to the students, these initiatives could well help the software industry itself. By getting kids interested in programming at a younger age, we may at last reverse the growing gender gap in future by reducing the perception of programming as being a masculine discipline (something Girls in Technology are already doing good work on). And of course employers would love increased competition for good jobs.
It's not all good news though, as a drought of great programmers also means a drought of qualified, passionate teachers. Even with the current, much more limited ICT classes, it's estimated that, in the UK, only 30% of the teachers responsible for these classes actually have direct, relevant education in what they're teaching. There are many lucrative careers open to good coders, and this is especially the case with the more mathematically-minded where their skills are in demand for the huge amounts of data wrangling needed in the financial sector. It's not easy to persuade someone that, after some very expensive years at college, they should head into a relatively low-paid line of work, no matter how "rewarding' it might be.
What languages do you think we should be teaching kids? How should we do it? How would you persuade great programmers to pass on their skills and enthusiasm to the next generation by teaching programming?
by Dave Convery
Close Those Loopholes: Lessons learned from Unit Testing T-SQL
09 January 2012
by Alex Kuznetsov
Alex has done some pioneering work on the testing of stored procedures over four years, and has learned a great deal in the process. In this article, he spells out the lessons learned from a wealth of experience in Unit Testing T-SQL.
Roughly four years ago, my team implemented, and began using rigorously, a harness of automated tests from our database code. With the help of Alex Styler, I wrote a series of articles explaining, from a developer's perspective, how we unit test databases, and in particular stored procedures. In these articles, we provided a working framework for testing (i.e. the implementation of all the modules we used), but we did not spend much time explaining why we made certain choices regarding test implementation, tools and language.
Four years later, this article attempts to describe our automated testing from a team leader's perspective, highlighting which problems show up as we keep changing our system, and as the size of our code base grows. It also revisits some of the choices we made and, with the benefit of hindsight, assesses how they worked out.
The benefits and costs of automated database testing
Creating and maintaining a harness of automated tests is never cheap: it takes time and effort to create the tests and additional time and effort to adjust them in response to changes in our systems.
Given this investment, we expect the following payoff: testing a code change, and making sure nothing else was broken as a result of the change, becomes extremely fast and reliable. In Agile environments, where change is frequent and the team expects a rapid response to these changes, it is particularly important to have efficient and comprehensive test harnesses.
Even under the best circumstances, a useful test harness requires a lot of effort to create and maintain and, unfortunately, it is particularly challenging to unit test T-SQL modules because:
This means that automated tests for T-SQL modules require extra care, in order to get them right, and if we do not do it right, our test harness may be prohibitively slow to run, or very brittle and expensive to modify. In either case, we might end up spending too much on the test harness, and eventually decide that it simply not worth the pain.
Despite all this, our experience over four years of unit testing stored procedures has proved to us that it is possible to have a test harness that manages to inform us if our T-SQL modules are broken, run in reasonable time, and can be maintained with reasonable effort. More to the point, it is also quite feasible to start adding tests to a system which does not have any, and reap the benefit of such tests, in a reasonably short time.
Lessons Learned
The goal here is to describe the main lessons we've learned from our database testing in a way that will enable someone joining a new project which doesn't currently use automated testing, to start adding useful tests quickly, and in places where they are most needed.
A brief note on nomenclature
Strictly speaking, not all the tests we discuss in the article are unit tests. Some might be better described as regression tests, others integration tests. The emphasis of this article is simply on developing useful tests that run automatically and involve database objects.
Trivial modules usually don't need tests
All tests in our system must have a reason to exist; the effort required to create and maintain a test should be justified by the payoff we expect to get from it. In other words, when we break a module that is covered by a test, the test must help us determine, quickly, exactly what is broken. In most cases, tests covering very simple modules do not fare well against these criteria. Consider, for example, the trivial stored procedure shown in Listing 1.
CREATE PROCEDURE dbo.SelectCountry
@CountryCode VARCHAR(3)
AS
BEGIN ;
SET NOCOUNT ON ;
SELECT CountryCode ,
[Description]
FROM dbo.Countries
WHERE CountryCode = @CountryCode ;
RETURN @@ERROR ;
END ;
Listing 1: A trivial stored procedure
With or without a test, changing this procedure would be very easy and the additional time effort that will be required to maintain the test as well as the code is probably wasted. Explicitly testing such trivial modules rarely makes sense (except in articles and books, where all examples must be short!)
Complex modules and queries, in contrast, require more effort to maintain, and benefit more from automated testing because they:
So, if our system does not have any tests at all, we should definitely start by first developing tests for the more-complex modules.
Integration tests are vital
Suppose that we have a complex ETL process, developed a while ago, and we need to change it. The transformation phase of this process is far from trivial, so it takes considerable time to understand what it is doing. Regardless of the quality and quantity of documentation, it really helps when we can run a few working examples. Also, of course, we need to make sure that our change to the ETL process doesn't break anything. More specifically, it really helps if we can do the following:
Note that the process described above would definitely not be a unit test, because it involves multiple modules, possibly developed in more than one language. Yet it would be highly useful, and we do want to have such tests. This ETL process is just one example; there are typically many situations when we want to run automated tests that involve both client-side code and the database.
Add tests gradually
In reality, we have too many other demands on our time to concentrate exclusively on developing a test harness for more than a few hours or days. Instead, we typically have to include work on tests in our already busy schedule, gradually improving our test coverage.
In order to be able to add tests gradually and easily, we need a sound testing framework. However, setting up the framework is somewhat involved, and must be done before we can run our first test. To run automated tests, we need the ability to:
Let us discuss in more detail our initial, up-front investment, setting up the framework.
Requirements for the test databases
First of all, every developer needs his or her own test database in order to avoid interfering with each other's activities. Overall, it is simpler and cheaper to let everyone create and drop their own sandboxes, as needed. We've found it most convenient for each member of our team to just run SQL Server Developer's Edition right on their workstation. This allows each developer to work off different Git branches, and possibly different versions of database schema, and to use different test data, if needed.
Secondly, we need a simple and rock-solid way to create a sandbox database from scripts, and data that is version control friendly. Text files, such as SQL scripts and .csv files, are version control friendly; they allow us to see history of changes, and that is essential when we are determining what went wrong.
On the other hand, binary files such as backups and detached files, do not easily allow us to analyze a history of changes. As such, we don't use them as the primary way, or the only way, to create a sandbox database.
Finally, since we are going to concentrate on covering only the more-complex modules, and are going to add test coverage incrementally, we do not have to have the full database schema in source control before we roll out our first test. Instead, we can concentrate on one schema or one domain area. For example, we can concentrate on Sales schema for now, and not script out into version control any objects from Marketing schema, unless they are referred to by objects in Sales schema.
Once each developer has a sandbox database, it is time to start using it, and to start benefiting from the time and effort invested in creating it, even if the sandbox database is not quite complete, as yet. We can begin covering with tests all the new complex modules in Sales schema, as well as covering existing modules as we need to change them for whatever reason.
Adding the first tests: Clarifying the requirements
Developing tests should begin with clarifying the requirements. At the risk of stating the obvious: as we develop tests for a module, we have to make sure that it is doing the right thing.
Incomplete, incorrect, and ambiguous communication between customers and developers, resulting in incomplete or incorrect requirements, is a serious problem that frequently slows down software development. Improving communication is especially important in Agile teams, where speed of development is essential. Lots of research and innovation is going on in this area and one article in particular that's worth reading is Introducing Behavior Driven Development, by Dan North, which offers a way to dramatically improve our communication, guarantee that our documentation is always up-to-date, and involve our customers in creating a meaningful test harness.
Fortunately, in database programming we can have executable requirements without having to develop a language for that purpose. Let's consider a specific T-SQL example of executable requirements. Suppose that we need to implement a stored procedure dbo.SelectCustomersByName, and the requirements are as follows: "the user should always provide last name. First name is optional. The module must return all matching rows."
Clearly the requirements are incomplete, and as we develop the module, we need answers to the following questions:
I might be missing a few questions, but I'm sure you get my point.
Instead of communicating via e-mail, updating some document, or modifying a ticket, all of which are time-consuming, we can just translate the requirements into straightforward stored procedure calls, as demonstrated in Listing 2.
-- if first name is not provided, return all matches on last name,
-- ordered by first name and ID
EXEC dbo.SelectCustomersByName @LastName = 'Yang' ;
GO
-- if first name is a zero-length string, silently convert it to NULL
-- return all matches on last name, ordered by first name and ID
EXEC dbo.SelectCustomersByName @LastName = 'Brown', @FirstName = '' ;
GO
-- if there are multiple matches, rows must be ordered by ID
EXEC dbo.SelectCustomersByName @LastName = 'Brown', @FirstName = 'Jessica' ;
GO
Listing 2: Executable acceptance criteria
When we have set up enough test data and have some implementation, we can just create the sandbox database, run the script, and show the script and its output to our customers. If there is any misunderstanding, we can quickly fix the code and/or add more test cases. This approach works especially well when we work right next to our customers; collocation is quite common in Agile environments.
The script works very wells as means of communication between customers and developers. Even better, we can incorporate this script directly into our test harness, so that it also serves us as an automated test. All we need to do is generate the expected output in XML format, as we shall discuss soon, and we are all set. Whenever we need to run our test harness, it will automatically create an empty database, set up test data off scripts loaded from version control, execute the requirements, and match actual results against expected ones, which are also loaded from version control.
So, one and the same T-SQL script serves several purposes: it provides clear and precise requirements, forms part of our automated test harness and offers practical and easy to use documentation in the form of working examples.
Traditional documentation can easily get out of sync with the actual system, and that may become a serious problem. If, however, requirements take the form of working examples, executed against a test database, they must be in sync with current state of our system; otherwise our tests would fail.
Matching actual test results against expected
At this point, let's assume that we have clear and complete requirements in the form of a commented T-SQL script, and the output of the script looks correct. However, to have a complete automated test, we need to match its output against expected results every time we run it. We've certainly learned a few lessons here, over the past four years.
Everything must be verified in all cases
When we explicitly test a stored procedure that returns result sets, we should always verify the structure of the result sets, as well as all values in all returned rows, match the expected results. If a column name or type changes, this may break some other code. Our tests are more useful if they detect all potentially-breaking changes.
Some database testing frameworks allow us to choose whether or not we want to verify the structure of the result sets. There might be cases when we do not want to detect such breaking changes, but so far I have not encountered a single such case in my practice. So, in order to keep things simple, and to avoid wasting time making the same choice over and over again, our framework simply does not allow such a choice. Instead, our framework always verifies that the structure of results sets is as expected.
When a test fails, it must provide full details
All too many automated tests fail too early, without outputting the full details of what exactly went wrong. As a result, we end up spending more time than necessary determining what exactly is broken. Let us consider, for example, the typical xUnit-type code snippet in Listing 3.
Assert.AreEqual(1.23, actualResults.Rows[0].Columns[0]);
Assert.AreEqual(new DATETIME(2011, 11, 5), actualResults.Rows[0].Columns[1]);
//snip
Assert.AreEqual(1.25, actualResults.Rows[3].Columns[5]);
Listing 3: A typical x-unit-style test
If there is any discrepancy between actual and expected results, this test will surely indicate failure, which is good. The problem, however, is that after the first failure no more checks are executed, so we do not get very much information about why the test failed. Suppose, for instance, that the very first assertion failed. Is the first row missing altogether from the result set? Have the rows returned in the wrong order? Is this the only wrong value in the whole result set? We do not know, and we have to spend extra effort to understand what exactly is going on.
If a test fails, usually we want to know exactly what went wrong right away, and in full detail, so automating this very common task to the fullest make a lot of practical sense. Just verifying the row count of the result set is not good enough; it would detect only one of the previous three problems. Another popular approach, checksum verification, would detect all three problems but when such a test fails, we still do not know exactly what went wrong.
In our framework, we store the expected and actual results as text (XML) files, so we can use any diff tool, such as TortoiseMerge, to see all the differences. If, for instance, the first row is missing, we can see this right away, as shown in Figure 1.
Figure 1: A missing row in the actual results (click to enlarge)
Similarly, it is obvious from Figure 2 that only the first value in the first column does not match.
Figure 2: Only one non-matching row
If the rows return in the wrong order, it is just as easy to spot, as shown in Figure 3.
Figure 3: Rows returned in the wrong order
This test output gives us the whole picture, whenever our test detects a discrepancy. Note that the XML files shown in the output are, by design, version-control friendly; they use line breaks and indentations so that they show only one property (or one column, or one field) per line. As such, we can easily see all the differences without having to scroll left and right, even on a smallish laptop screen. Little things like this can boost productivity.
Expected results should be generated and stored separately
The reason is simple: this approach speeds up both creating and, in particular, maintaining these tests. For example, suppose that we need to unit test a procedure dbo.SelectCustomersByZipCode; we've set up test data, and have issued the following stored procedure call from SSMS:
EXEC dbo.SelectCustomersByZipCode @ZipCode = '60540' ;
Our testing framework will do the rest for us; it will execute this script and store its output in in an XML file, as shown in Figure 4.
Figure 4: XML output from a test
However, at some later data, we add a new column, MiddleName, to our dbo.Customers table and need to expose this new column in many of our stored procedures. This is one of those cases when making a change itself is easy, but fixing the tests broken by the change may take much more time.
Instead, we can just make the change and rerun the tests in a mode that overwrites expected results whenever there is a mismatch, as shown in Figure 5.
Figure 5: New column added
We must still verify all the changes we commit to version control, and this takes some time; there is no way around it. However, we have fixed all those broken tests at once, and with very little effort. We did not have to fix tests one by one, neither manually nor via wizards, which would have been very boring, repetitive, and time consuming.
As we have seen, keeping expected results separate from the tests can dramatically speed up maintenance, because it allows us to automate a lot of tedious work.
Developing tests defensively
As we are developing tests, we need to do it defensively, just as when we are developing any other code, otherwise we can make a change that renders our test useless, and not notice it.
Suppose, for example, that we are testing a stored procedure which returns all the events that occurred within a range of time, including the beginning of the range, and excluding its end, as shown in Listing 4.
-- test data
EXEC dbo.SaveEvent @EventTime = '20111228 09:30:00',
@Description = 'Range starts, must be returned' ;
EXEC dbo.SaveEvent @EventTime = '20111228 09:35:00',
@Description = 'Inside the range, must be returned' ;
-- this row is exactly on end of range, must not be returned
EXEC dbo.SaveEvent @EventTime = '20111229 09:40:00',
@Description = 'Range ends, must NOT be returned' ;
EXEC dbo.GetEventsForDateRange @EventTimeFrom = '20111228 09:30:00',
@EventTimeTo = '20111228 09:40:00' ;
Listing 4: A faulty unit test
In this test we are selecting all events that occurred on or after 9:30 AM and before 9:40 AM on December 28th, 2011.This test is supposed to return the two first rows out of three, and it does exactly that. However, the test is not completely correct: the third event occurs one day later that the range submitted to dbo.GetEventsForDateRange ends on December 29th instead of December 28th.
We tried to do it right, testing the edge case when an event occurs exactly when a range ends, and we even managed to document our intent in a clear comment, but we have still ended up with a mistake in our test, of which we are not aware.
All this effort spent on good comments has failed to prevent us from a mistake. This is a good demonstration of that fact that comments, however useful they can be, are frequently not good enough, and that we can do better. Let me demonstrate how we could avoid such a mistake.
In our test, when we execute dbo.GetEventsForDateRange, we are assuming that there is an event occurring exactly when our range ends. Instead of just commenting this assumption, we can enforce it in several ways. If we are setting up test data for this one test, we can enforce the assumption as shown in Listing 5.
DECLARE @EndRange DATETIME ;
SET @EndRange = '20111228 09:40:00' ;
-- test data
EXEC dbo.SaveEvent @EventTime = '20111228 09:30:00',
@Description = 'Range starts, must be returned' ;
EXEC dbo.SaveEvent @EventTime = '20111228 09:35:00',
@Description = 'Inside the range, must be returned' ;
EXEC dbo.SaveEvent @EventTime = @EndRange,
@Description = 'Range ends, must NOT be returned' ;
EXEC dbo.GetEventsForDateRange @EventTimeFrom = '20111228 09:30:00',
@EventTimeTo = @EndRange ;
Listing 5: The fixed test
If we are running multiple tests off the same test data, which is created in another script, we may add one more test to ensure that our assumption is correct, as shown in Listing 6.
-- test data is set up in another script
DECLARE @EndRange DATETIME ,
@EndRangePlusMinute DATETIME ;
SET @EndRange = '20111228 09:40:00' ;
SET @EndRangePlusMinute = DATEADD(MINUTE, 1, @EndRange) ;
-- must return exactly one row
EXEC dbo.GetEventsForDateRange @EventTimeFrom = @EndRange,
@EventTimeTo = @EndRangePlusMinute ;
-- the row from the test above
-- must not be returned in this test
EXEC dbo.GetEventsForDateRange @EventTimeFrom = '20111228 09:30:00',
@EventTimeTo = @EndRange ;
Listing 6: Adding another test to enforce an assumption
As we have seen, a few simple changes can correct our test harness and make it more robust.
Implementing the testing framework
This section describes the choices we've made with regard to tools and techniques, and how we've adapted them, as necessary, to help us survive frequent changes, while maintaining high quality in our system.
Choosing an existing testing tool vs. implementing our own
As Agile developers, we spend a lot of time every day working with our automated tests, so getting them right is essential; inefficiencies that could be easily tolerated in less dynamic environments get in our way all-too-often in Agile development. Such inefficiencies are like a small piece of rock in our shoe; the pain can be tolerated if we are going to walk a dog around the block, but it can cause a serious problem if we are running a marathon.
In our environment, we knew developing and maintaining unit tests was going to be a marathon, not a short jaunt round the block, so our stance was that the tools should do exactly what we want without unnecessary complications, and absolutely without any bugs.
When we started this project, in 2007, we could find no ready-made tools that would allow us to test database modules in the way we wanted. Rather than try to adapt to the limitations of these tools, in our testing, we made the decision to "reinvent the wheel" and develop our own testing tool.
Four years later, I can state confidently that this decision paid off very well for us. We concentrated on the tasks that we perform many times every day, and we ended up with a library that automated only the most important tasks but automated them really well. The relative lack of "features" meant that we could deliver a very robust solution; we encountered no bugs during four years of intensive use, and we fully trust our tool.
As Agile developers, we need to be able to refactor with confidence, and our simple and convenient tool allowed us to maintain very good test coverage quite easily. The time and effort invested in developing a simple and robust in-house tool paid off many times over.
Choosing the testing language
We chose to implement our testing solution in C#, because the team felt unanimously that C# development is more efficient than T-SQL development. As a result, we are using C# code to test T-SQL, and so technically our tests are not unit tests, but are integration tests.
However, doing most of the heavy lifting in C# also proved to be the right choice; it allowed us to implement testing logic only once and reuse it thousands of times. Also in my experience we could easier accomplish good performance with C#. More to the point, certain things are just not possible in T-SQL at all. For example, if a stored procedure returns multiple result sets, to my best knowledge there is no way to capture them all in T-SQL.
We absolutely did not want to restrict ourselves to stored procedures that return only one result set, so any methodology using T-SQL to test T-SQL was out of the question for us.
Conclusion
A harness of automated tests is more useful if we spend less time creating and maintaining it, and more time using it. Over four years of testing database code, we've learned that we should:
As our test harness gets bigger, we should expect some growing pains. They are quite real and need to be dealt with, but they are beyond the scope of this article. Before spending time and effort on improving our test harness, we need to know that it is actually worth it, which is the whole point of this article.
Happy programming and automated testing!
I would like to thank Dan North for reviewing the article.
The 'Close Your Loopholes' series of articles on Unit Testing TSQL code.
Close These Loopholes in Your Database Testing | Alex starts of a series of articles on 'Unit Testing' your database development work. He starts off by describing five simple rules that make all the difference. (31 Jul 2007) |
Close those Loopholes - Testing Stored Procedures | Alex and Alex give some examples of unit testing stored procedures. (20 Aug 2007) by Alex Kuznetsov and Alex Styler |
Close These Loopholes - Testing Database Modifications | Alex K and Alex S give some examples of unit testing Database Modifications (02 Sep 2007) by Alex Kuznetsov and Alex Styler |
Close Those Loopholes: Stress-Test those Stored Procedures | You can write a stored procedure that tests perfectly in your regression tests. You will hand it to the tester in the smug certainty that it is perfectly bug-free. Dream on, for without stress-testing you could easily let some of the most unpleasant bugs through. Alex showing how to catch those subtle problems. (03 Feb 2008) |
Close these Loopholes - Reproduce Database Errors | Here, Alex shows how you can test the way that your application handles database-related errors such as constraint-violations or deadlocks. With a properly-constructed test-harness you can ensure that the end-user need never sees the apparent gobbledegook of database system error messages, and that they are properly and robustly handled by the application. (23 May 2008) |
© Simple-Talk.com
It always works on my machine.
Published Wednesday, January 18, 2012 10:17 AM
Probably the most common question that the Red Gate developer tools support gets is "Does your X work with Y?" where X is your bit of software and Y is a bit of software made by a different company. This is probably the least answerable question in the known universe. Start with the obvious - "Does X work?" - full stop. Because with millions of possible configurations in Windows, it's entirely possible that it won't "work" at all. But I can personally guarantee you that it "works on my machine"! Second of all, what does "work" mean? Several things that come to mind:
Finally, as I already mentioned, the question could be about Fear, Uncertainty, and Doubt. For instance, if a new version of Microsoft .NET Framework comes out, there is a doubt that your program will not function correctly with it. I've heard of a dutiful network administrator mass-emailing every vendor he has bought any software from when a new version of SQL Server is on the horizon - "Does X work with the new version of SQL Server"? I believe it's a bit lazy to ask a question this way and you may not get the answer you expect, unless you are perhaps more specific about the particular functionality you are interested in.
TortoiseSVN and Subversion Cookbook Part 3: In, Out, and Around
16 January 2012
by Michael Sorens
Subversion doesn't have to be difficult, especially if you have Michael Sorens's guide at hand. After dealing in previous articles with checkouts and commits in Subversion, and covering the various file-manipulation operations that are required for Subversion, Michael now deals in this article with file macro-management, the operations such as putting things in, and taking things out, that deal with repositories and projects.
This is the third installment of the TortoiseSVN and Subversion Cookbook series, a collection of practical recipes to help you navigate through the occasionally subtle complexities of source control with Subversion and its ubiquitous GUI front-end, TortoiseSVN. So far this series has covered:
Part 1: Checkouts and commits in a multiple-user environment.
Part 2: Adding, deleting, moving, and renaming files, plus filtering what you add.
In the previous installment in this series, we focused on the minutiae of file management: adding, deleting, renaming, moving files and folders, with major emphasis on fine-tuning additions. This part now turns to file macro-management. Akin to the economic analogy of macro-economics dealing with forces that drive the economy as a whole, recipes in this part consider repositories and projects.
Reminder: Refer to the Subversion book and the TortoiseSVN book for further reading as needed, and as directed in the recipes below.
There are only two key terms you need to know to get the most from this part (from Basic Concepts in the TortoiseSVN book):
The repository is Subversion’s “central database which contains all your version-controlled files with their complete history.”
Your working copy is what you have checked out from the repository onto your local machine, regardless of whether this is the whole tree or a single folder, on the trunk or on a branch. Also see What is a working copy on StackOverflow to really get a grasp on this, if you haven’t already.
Furthermore, at the time of writing release 1.7 of Subversion (and the corresponding TortoiseSVN 1.7) is still fresh, barely a couple weeks in the wild. So starting with this part 3 article, I point out some notable improvements with this new release, where applicable.
Putting Things In
Setting up a new repository
You rarely need to set up a repository: Even when one is required, your system administrator is likely to want to do it. However, I am sure you will agree it is a crucial step so it would be remiss of me to omit a reference to this topic, however brief. Creating a repository is as simple as invoking the TortoiseSVN >> Create Repository here command (see Repository Creation in the TortoiseSVN book). It immediately starts to get a bit more involved though: your next step is to decide on your repository layout, i.e.do you want trunk, branches, and tags to be the absolute top-level in the repository, or do you want to subsume them within each project (see Repository Layout in the TortoiseSVN book).
Version 1.6
You must create the structure yourself.
Version 1.7
With version 1.7, TortoiseSVN will now add your trunk, branches, and tags directory structure for you, if you so wish. Select Create folder structure (see Figure 3-1) and the three standard folders are generated automatically, saving you several steps.
Figure 3-1 TortoiseSVN 1.7 now provides one-click convenience to setup the canonical folder hierarchy at the top of your repository.
The final step is to provide an appropriate access method to your repository. The simplest method is local access (via the file:// prefix protocol), but this is intended for local, single-user access only. As soon as you want a repository to be used by several people you must set up a proper server that uses either http:// or svn:// or their encrypted counterparts, https:// or svn+ssh:// respectively – see Accessing the Repository in the TortoiseSVN book. Do not be awed by the daunting task of setting up a server. Quoting the TortoiseSVN book:
In the early days of Subversion, setting up a server required a good understanding of server configuration and in previous versions of this manual we included detailed descriptions of how to set up a server. Since then things have become easier as there are now several pre-packaged server installers available which guide you through the setup and configuration process.
Grafting a subtree or importing a whole tree into a repository
Whether you want to start a whole project tree entirely, or just add a subtree to an existing project, the steps are essentially the same. In the case of a new project, you have to be familiar with the repository layout, though: unless your system administrator has set them up you will need to create the top-level trunk, branches, and tags folders for the new project before proceeding with this recipe. See the Setting up a new repository recipe for more.
There are two ways to import a file tree into the repository: the one-step import and the import-in-place techniques. The table shows that the latter is generally more advantageous—for each row, the item marked in green is better.
Item | Description | One-shot import | Import-in-place |
1 | Use global ignore settings to filter what to import | Yes | Yes |
2 | Select specific files and folders to import | No | Yes |
3 | Existing subtree becomes part of the working copy | No | Yes |
4 | Easier to identify the path with respect to the repository | No | Yes |
5 | Needs subsequent checkout (or update) to become part of working copy | Yes | No |
6 | Needs containing folder created in the repo-browser | No | Yes |
The one-step import is so-called because of the narrow interpretation of the need: yes, it takes only a single step to import to the repository, but almost always the true goal is to import to the repository and have a working copy of what you just imported available to use. This morphs the one-step approach into a four-step task:
The import-in-place technique is more flexible yet requires the same number of steps:
See Importing Data Into A Repository in the TortoiseSVN book for more detail.
Taking Things Out
Copying a working copy without the .svn files
Version 1.6
Browse to the folder you want to export, and then invoke the (TortoiseSVN >> Export) command to export the subtree rooted at that folder. TortoiseSVN opens a standard folder navigator to let you select a destination (Figure 3-2), along with a couple options. You can optionally specify whether to include any unversioned files and to include externals. (If instead you want to convert your working copy to be unversioned—i.e. remove the .svn files/folders rather than make a copy without them—see the next recipe.)
Figure 3-2 Folder navigator for exporting a working copy
Notice that the folder browser opens at the top of your file system tree so it may take you quite a few clicks to drill down to your destination folder. Alternately you can use drag-and-drop convenience instead of the Export command and the only thing you need give up is the choice to omit externals.
To do this, open Windows Explorer or equivalent so that you have access to your source location and your destination location at the same time so you will be able to drag from the source to the destination. Typically you could do this by enabling the folders pane and expanding the folder structure to expose your destination while setting the files pane to show your source. Alternately, you could use two separate Explorer windows, one for source and one for destination.
Select one or more folders from your source and drag them over the target by depressing the right-mouse button rather than the left. Upon releasing the mouse button, besides the standard copy, move, and shortcut buttons, the context menu will include two Subversion commands for exporting, as shown in Figure 3-3.
Figure 3-3 The context menu resulting from a drag-and-drop operation.
Those two choices are the equivalent of selecting or unselecting the Export unversioned items too checkbox above.
Version 1.7
The metadata storage within your working copy was substantially revised in version 1.7—there is but a single .svn directory in your root checkout folder. Thus it is a trivial task to copy the working copy to an unversioned tree: You just need to copy the tree through conventional means (Windows Explorer) and then delete that one .svn folder from the copy.
Converting a working copy to an unversioned tree
Version 1.6
A working copy in TortoiseSVN 1.6 is a subtree that is peppered with .svn files allowing TortoiseSVN to keep track of your interaction with the repository. If you want to strip out all these Subversion artifacts use the TortoiseSVN >> Export command, exporting the target folder to itself. TortoiseSVN will recognize what you are doing and prompt to ensure that you want to make the working copy unversioned.
A slightly better way requires installing a simple shell command with a registry tweak to actually give you a Delete SVN choice on the context menu. This saves the completely redundant step with the export command of having to navigate to the folder you already started from. See Jon Galloway's Remove SVN Folders hook.
Version 1.7
The metadata storage within your working copy was substantially revised in version 1.7—there is but a single .svn directory in your root checkout folder. Thus it is trivial to convert the working copy to an unversioned tree by simply deleting that one .svn folder.
Unversioning specific files
There are two easy ways to unversion a file, i.e. to delete it from the repository but to keep your local copy. The first method does only that; the second method has a side effect of modifying your ignore list.
Method 1: Select the files in Windows Explorer. Hold down Shift as you right-click to open up the context menu. When you open TortoiseSVN’s menu, it reveals additional commands on this extended version, including Delete (keep local). (See Ignore files which are already versioned in the TortoiseSVN book.)
Method 2: Select the files in Windows Explorer. Select TortoiseSVN >> Delete and add to ignore list >> file.ext or *.ext. (Note that in version 1.6 it was Delete and add to ignore list.)
Whichever leaf action you choose, the specific file you started with is marked for deletion from the repository. Once you commit the deletion, the file will remain in place, but now be unversioned. The side effect of this command is that it updates the svn-ignore list of the parent directory, with either the specific file name, or the file's extension. Once this change is committed, the now-unversioned file will be ignored by TortoiseSVN, showing no icon overlay.
Note that the svn-ignore list applies only to unversioned files; thus, if you selected to ignore by extension and you have other versioned files in the same directory with the same extension, they will be unaffected by the ignore directive. Any new files you create with the extension will be ignored by TortoiseSVN.
Unversioning all files of a specific type (or other criteria)
This recipe is essentially the same as the last, except for the first step. Instead of just opening Explorer, do a search in explorer to find all the files of interest. Select all ‘found’ files (Control-A) then proceed as above. Here, the TortoiseSVN leaf choice will say "Delete and ignore n items by name" and "Delete and ignore n items by extension". Upon selecting it, all n files will be marked for deletion and the parent directory of each will have an entry added to its svn-ignore list. Thanks to this StackOverflow question for inspiration for this recipe.
Removing your working copy
Sometimes you just want to start over. Or sometimes (though rarely:-) you actually finish something and want to cleanse the project from your disk to make room for the next one. Cleaning out/erasing/removing/eradicating (pick your favorite term) your working copy—all the files you checked out and worked on from Subversion—is about the easiest task to do in all of Subversion because it does not require the use of anything in Subversion! So here is the entire recipe:
Just delete the file tree from your disk with Windows Explorer or equivalent.
Doing a sparse checkout
Be glad you live in a time where TortoiseSVN is at version 1.7 or later. Be very, very glad! Figure 3-4 shows a section of the 1.6 manual describing how to assemble a sparse working copy from selected pieces. It is reminiscent of trying “…to construct a mnemonic memory circuit using stone knives and bearskins”. (You can find previous versions of the manual at https://sourceforge.net/projects/tortoisesvn/files/.)
Figure 3-4 The tedious process of doing a sparse checkout prior to TortoiseSVN 1.7
One of the great boons of TortoiseSVN version 1.7 is the new implementation of sparse checkouts. The Checking Out A Working Copy section of the Tortoise SVN book now states simply:
To easily select only the items you want for the checkout and force the resulting working copy to keep only those items, click the Choose items... button. This opens a new dialog where you can check all items you want in your working copy and uncheck all the items you don't want.
The Choose items… button is not particularly prominent, being in about the middle of the Checkout dialog. But what it lacks in prominence in makes up for in power! It opens a secondary dialog containing your file tree arranged hierarchically, with every file and folder having an adjacent checkbox to enable or disable it. Note that deselecting a folder will also deselect everything below it hierarchically, while selecting a folder selects just that individual folder. This makes it easy to prune subtrees out. But be careful! If you accidentally deselect some parent folder, this can wipe out a whole slew of choices you may have set up below that.
Repository Concerns
Deploying Subversion for a single-user installation
As discussed in the introduction to Part 1, version control is just as useful for a single-user environment as it is for a large team. Setting up a Subversion or TortoiseSVN installation for a single-user environment, though, can be done more simply than a multi-user environment. For example, you do not actually need to set up a server for your Subversion repository; you could just use the file:// protocol to access the repository on your local machine and you do not have to set up a server. See either TortoiseSVN for the single user or, for command-line use, Single-User Subversion. Both of those articles are quite ancient in Internet time but the basics they cover are still valid. Please note, however, that the non-server implementation approach, while possible, is not necessarily the best choice because you get no security with the file:// protocol and you have uncontrolled access to the Subversion database (allowing avenues for corruption). For small installations—including single user—consider running the svnserve server included with the Subversion distribution. And, as of TortoiseSVN 1.7, now included with TortoiseSVN as well! Svnserve is a lightweight, standalone Subversion server designed for situations where you do not need the full might of an Apache server. Also see the thorough discussion on the finer points of the svnserve server by David W. in his answer to this StackOverflow post.
Reconnecting to a relocated repository
TortoiseSVN offers a Relocate command that is available on the context menu – regrettably. It is regrettable in that it appears mixed in with Branch, Switch, Export, and Add, all commands that you are likely to use on a regular or at least an occasional basis. But Relocate is a command to be used quite rarely; indeed, you may never need to use it. Here are a few common scenarios that you might think could be handled by Relocate, but they are not:
You should only be continuing to read this recipe if the address to your repository has changed, whether it is the IP address, the protocol (e.g. http vs. https); or the root path. In such cases, you want to redirect your existing working copy to point to the new location of the repository on the server. Use the TortoiseSVN >> Relocate command to do this. All you have to specify is the new URL. See Relocating a working copy in the TortoiseSVN book.
© Simple-Talk.com
Indexing - take the hint and leave it to the experts
Published Tuesday, January 10, 2012 7:00 AM
The most common T-SQL command in use has to be the SELECT statement, it is the bedrock of any SQL Professional's day. Sometimes it's used to snatch some data from a table or two while some quick investigation is done, other times it is at the heart of a stored procedure or view that will inform business decisions for coming months or even years.
The latter purpose means you should spend some time making sure it is as efficient as possible. Not endless hours to save a millisecond or two (I mentioned that in my last blog on balancing effort with expected reward) but a little while making sure it is pretty good.
During this time you might read through the MSDN details on the SELECT statement (http://msdn.microsoft.com/en-us/library/ms176104.aspx) and that might lead you to the Query Hint help (http://msdn.microsoft.com/en-us/library/ms181714.aspx). Now as a diligent DBA you are looking at your execution plans and may want to guide the query to use a particular index that you know exists on the table but for some stupid reason the query optimiser isn't using. This might be a bad idea. It might be a good idea but, it might be a very bad idea. It is often that the average DBA knows better than the optimiser.
Lets look at a simple table and a simple query.
CREATE TABLE [dbo].[AccountFlags]
(
[AccountsFlagID] [int] NOT NULL
IDENTITY(1, 1) ,
[Account_Ref] [char](7) NOT NULL ,
[FlagID] [int] NOT NULL ,
[FlagValue] [bit] NULL
)
ALTER TABLE [dbo].[AccountFlags]
ADD CONSTRAINT [PK_ACCOUNTSFLAGS]
PRIMARY KEY CLUSTERED ([AccountsFlagID])
ON [PRIMARY]
CREATE UNIQUE NONCLUSTERED INDEX
[IX_ACCOUNTSFLAGS]
ON [dbo].[AccountFlags]
([Account_Ref],
[FlagID])
ON [PRIMARY]
CREATE NONCLUSTERED INDEX [IX_ACCOUNTSFLAGS2]
ON [dbo].[AccountFlags]
([Account_Ref],
[FlagID] DESC)
ON [PRIMARY]
CREATE NONCLUSTERED INDEX [IX_ACCOUNTSFLAGS_IDValue]
ON [dbo].[AccountFlags] ([FlagID],
[FlagValue])
INCLUDE ([Account_Ref]) ON [PRIMARY]
NOTE: Now this post isn't about what indexes to create, how to create them or any such intricacies, it is purely to show how an query hint suggesting a certain index is used can disrupt TSQL execution immediately and in an on-going fashion mislead your decisions and as a DBA. If you want explanations of what indexes to create then you can find plenty of that advise in other blogs and Microsoft content.
On our table we have plenty of indexes covering the columns we are querying so we should be seeing really fast query execution. However, if you have a query that has an query hint in it as follows
SELECT FlagValue
FROM dbo.[AccountFlags] AS af WITH (INDEX (PK_AccountsFLAGS))
WHERE FlagID IN (1, 5)
AND Account_Ref = 'HAYNE04'
then the results of running the query in SSMS will be misleading and the effect of running it within a production system will draw heavily on your server's resources
For a start the missing index suggestion will show in the results pane and that missing index suggestion is always the same.
CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON[dbo].[AccountFlags]
([Account_Ref],[FlagID])
Despite there being an index that matches this exactly.
By using the query hint you are forcing the query to run in a particular way and the table doesn't get evaluated for existing indexes so the suggestion is always made to have an index created that would help.
Now the query above has a cost of 10.0609, if we remove the query hint however the cost drops to 0.0075, some 1300 times less effort. This is born out by the execution times of 1196ms for the query with the hint and 26ms for the one without. The results of using SET STATISTICS IO ON is another compelling argument too:
With query hint -
Table 'AccountFlags'. Scan count 5, logical reads 9461, physical reads 167, read-ahead reads 9397, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Without query hint -
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'AccountFlags'. Scan count 1, logical reads 3, physical reads 3, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
This is clearly causing a lot of problems:
My advice? Leave Query Hints to extreme cases and apply them with advice from an index expert. Going it alone means you could be making hard work of your data access. Do you hate your servers that much?
by fatherjack
Filed Under: How To, Tips and Tricks, TSQL
Relational Databases and Solid State Memory: An Opportunity Squandered?
17 January 2012
by Robert Young
The relational model was devised long before computer hardware was able to deliver an RDBMS that could deliver a fully normalized database with no performance deficit. Now, with reliable SSDs falling in price, we can reap the benefits, instead of getting distracted by NOSQL with its doubtful compromise of 'eventual consistency'.
'But the hour cometh, and now is'
John 4:23
Those who cannot remember the past are condemned to repeat it.
George Santayana, 1905
I would remind you that extremism in the defense of liberty is no vice! And let me remind you also that moderation in the pursuit of justice is no virtue.
Barry Goldwater, 1963
I'm not sure I've even got the brains to be President.
Barry Goldwater, 1964
I first became aware of Solid-State drives (SSDs) more than a decade ago, when I came across the website for Texas Memory Systems. At that time, SSDs were, by and large, expensive dynamic memory (DRAM) devices used as accelerators, largely for database systems. Flash SSD was used, to a small but noticeable extent, for military standard (MIL-SPEC), and other ruggedized embedded usage.
About five years ago, STEC emerged as the leading boutique vendor of "Enterprise" flash SSD; building everything but the NAND flash memory themselves and using only single-level cells (SLC). These were “Enterprise Serious” parts, not the slower-than-HDD nonsense that was showing up in laptops. STEC were the major supplier to EMC – sole supplier for a period, according to legend. At first, their stock price soared, then didn't, then soared again. But STEC have recently reported for the quarter and life isn’t soaring. Why might this be, and what effect, if any, might there be on the fit between SSD and relational database systems?
On the whole, I'm afraid the game is over. There is historical precedent, alas. In the 1960s, IBM released Direct Access Storage Device (DASD) disc drives, which were integrated with the System/360 architecture, and for which they defined direct access file methods. COBOL coders, however, ignored the direct aspect of the device, and treated it as faster tape. Sequential file-processing continued on its merry way, not least because there was already nearly a decade's worth of existing COBOL (and Autocoder and FLOW-MATIC and others) out there that no one wanted to re-build. Codd, on the other hand, realized what random access meant to datastores, and wrote his first paper.
Likewise, some of us saw the hand-in-glove fit of SSD and RDBMS early on when flash SSD was first emerging. On more than one occasion, I wrote to vendors pleading with them to see where the market for flash SSD really was. But, again, coders saw flash SSD as a cheaper way to speed up their ‘Row-by-agonising-row’ (RBAR) code, just as their grandfathers used DASD 40 years earlier. Early on in STEC's push into the arena, there was much talk of one-for-one replacement of HDD with SSD. Those with more level heads dismissed this. Not only did it fail to happen but, outside of sub-desktops where an SSD may be the sole storage, flash SSD has largely been relegated to Tier 1 storage, a term invented for SSD, so far as I can tell.
This all would make no sense in a rational world. In such a world you’d find that Fifth-normal-form (5NF) catalogs, made feasible by SSD storage, would become the norm, because of nearly cost free joins and perhaps an order of magnitude less data to process: But the SSD vendors haven't taken this as a selling point for their devices. They seem content to sit on their hands and let the clients tell them what to do. While the rule that "the customer is always right" applies appropriately to restaurants, it surely doesn't apply to venues which depend on science and technology: Would one, for example, argue with the neurosurgeon over how to remove that pesky tumor? There was a time when vendors and consultants actually brought more experience and knowledge to the table (sigh). But it would appear that the vendors, both the STECs and the EMCs to whom they sell, have consulted their abacuses and decided that the risk of any reduction in sales that might result from intelligent use of SSDs would be more harmful than only selling handfuls of them for Tier 1 intermediate storage.
I think they're wrong. I think the big market lies in harnessing the fully relational database, and locking in clients to 5NF on SSD. Hard-disk Drive (HDD) would never be able to catch up. But the IBMs and EMCs clearly don't want to do that. I suppose they see a threat in the reduced data footprint of high-number normal schemas. By analogy: the RDBMS vendors "extend" the ANSI standard with what they assert to be useful features, and then encourage developers to use them. Oracle added the CONNECT BY syntax decades ago to simplify hierarchical structures (the ANSI syntax we have today was concocted by IBM, likely to avoid any reparations to Oracle); Bill-of-Material (BOM) processing has been a significant requirement in commercial software from the beginning of time and BOM data has a (sort of) hierarchical structure. There's a very good reason for an STEC to "partner" with Microsoft or IBM or Oracle to promote this method of using SSD: it’s different from RBAR processing and better in most cases.
The search-dominated thinkspiel in application development will pass. After all, there's only so much need for toy applications, such as Facebook and Twitter, which generate infinite bytes; corporate level systems, even with 5NF, are likely to stay at the gigabyte level. For transaction dependent applications, Codd is still right. "Eventual consistency" is a farce in which half the audience don’t understand the jokes.
I put fingers to keyboard for this missive a few days ago. I've just now gotten this possible reprieve from my dour foreshadowing of SSD’s future. While it won't be cheap, Fusion-io has built an SSD large enough to be the primary store for corporate level systems, one that should handle many OLTP databases whole.
To some extent, more so when I'm depressed, I blame database developers for not having the raw guts to stand up to the hectoring of the NoSql, xml, and all the other RBAR/flatfile zealots. If we abrogate our professional training and experience to praise whichever New Clothes the Emperor is wearing, are we little more than tenant farmers? Instead, we should be exploiting these new technologies to the hilt by creating uncompromising relational databases now that SSD has at last given us the hardware to catch up with Codd’s original relational vision.
References
Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM 13 (6): 377–387. doi:10.1145/362384.362685
Codd, E.F. (1990). The Relational Model for Database Management (Version 2 ed.). Addison Wesley Publishing Company. ISBN 0-201-14192-2.
© Simple-Talk.com
5 reasons why I almost loved WPF
Published Friday, January 13, 2012 1:14 AM
Before you read this you should probably read my original post 5 Reasons why I hate WPF. Also "Qwertie" wrote a nice article detail about his overview of why WPF sucks.
1 - Binding
There is something so nice about setting a button to be enabled or not enabled based on a property in the view. All the enabling and disabling is handled for you (more or less). I find that using MVVM helps in many ways to separate UI logic from UI appearance. Something I've always found difficult when writing WinForms in the past.
Using this mechanism and writing a simple implementation of INotifyPropertyChanged means your control availability can be declarative rather than procedural.
public bool ShowFinished
{
get { return m_ShowFinished; }
set
{
m_ShowFinished = value;
OnPropertyChanged(() => ShowFinished);
}
}
Then in your XAML you can do something moderately simple (albeit with arcane syntax)
<BooleanToVisibilityConverter x:Key="boolToVis" />
<StackPanel Orientation="Horizontal" Visibility="{Binding ShowFinished, Mode=OneWay, Converter={StaticResource boolToVis}}">
Simply set the property to whatever you want in code and the visibility of the stack panel in the UI will show or hide depending on the value. However I have found problems where multiple properties changes in a short space of time don't seem to actually update until the UI receives some event to prompt a redraw.
2 - Pretty
One thing nobody can deny is that XAML programs can routinely look much prettier with much less work than the same program done via WinForms. This is one of those occasions that are making something hard trivially easy. Say you want to slide in a panel from the side covering the controls and landing with a nice bounce above. No problem.
<EventTrigger RoutedEvent="ToggleButton.Checked">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetName="RightSlide"
Storyboard.TargetProperty="X"
From="{Binding Path=ActualWidth, ElementName=HiddenSlideOut, Mode=OneWay}"
To="0"
Duration="0:0:0.6">
<DoubleAnimation.EasingFunction>
<BounceEase EasingMode="EaseOut" />
</DoubleAnimation.EasingFunction>
</DoubleAnimation>
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
The danger here is (apart from again the arcane syntax) that it's almost too easy to do fancy graphics. Developers are not known for their restraint when given shiny things to play with - just look at <marquee> or <blink>. The design of a program is best left to a UX professional - step away from the shiny thing.
I may be old fashioned but one of the things I liked about WinForms is some degree of consistency. If something was a button it looked like a button, it rarely looked like a teapot or a spinning cube. Until there is some form on consistency in the new UI I worry that users won't be able to get the most out of a program because they simply won't know what is design and what is interface.
3 - Separation of UI and Engine
MVVM is a new thing for me. I was only introduced to design patterns when I started and Red Gate and I still feel I should get more experience writing code using them than I do. I really like the idea behind the MVVM pattern that you can do with XAML. This makes it much easier to test the UI using automated tests and generally inspires you to write cleaner XAML using bindings a lot more extensively.
The gotchas are there for all to see though, try showing a modal dialog box for instance. Or perhaps you'd like to close the application. There are solutions to the issues but none of them yet have the simple elegance of MVVM itself.
4 - CSS style re-use
Using WinForms colour consistency is neigh on impossible to achieve. However with the use of resources in XAML it's the simplest thing in the world to make sure all your controls share a common colour scheme and even more via the use control templates and decorators. I do think there are many varied ways of doing the same thing and very few "best practices" that were truly elegant.
<Brush x:Key="SlideColor">#373737</Brush>
<SolidColorBrush x:Key="DisabledForegroundBrush" Color="#888" />
5 - XML
I've a confession to make, my name is Richard Mitchell and I'm an XML addict. Ever since I made extensive use out of XML and XSLT in a previous job I've fallen in love (or lust) with it. Now there are those of you who like to point out the failings of XML but almost always in those circumstances you shouldn't be using XML in the first place for that problem.
The simple rules and fantastic tool support nowadays makes autocompleting even complex XML an absolute breeze and XSD support makes it even better.
Conclusion
Should you try WPF - I say yes. If nothing else it gives you a great new perspective on how UI programming could work, perhaps you'll stay in the WPF world or use your knowledge in HTML5 (the future is obviously HTML5 no matter how much I personally dislike javascript).
Buck Woody's Cloud Howlers
17 January 2012
by Buck Woody
We asked Buck Woody to come up with his favourite 'Cloud' Howlers. After 'Howler' monkeys, we are faced with Howler letters. Buck dreams of sending Howler letters to the folks who dreamed up the marketing hype around 'cloud' services, who misunderstand services, who don't prepares applications for distributed environments and so on.
A Howler is a magical letter in a red envelope which enchants the written message into the writer's voice, usually at a very high volume. The physical temperature of the Howler begins to rapidly increase upon delivery, and it will explode if left unopened for too long. This mechanism ensures that the recipient will open the Howler, even though he or she knows that it contains an unpleasantly loud message. Once the message has been received, the envelope bursts into flames leaving only ashes. The purpose of the Howler is to deliver a message expressing anger or great displeasure in a manner which standard writing cannot adequately convey. (http://harrypotter.wikia.com/wiki/Howler)
"You'd better open it, Ron. It'll be worse if you don't. My gran sent me one once, and I ignored it and - it was horrible."
—Harry Potter and the Chamber of Secrets, by J. K. Rowling.[src]
I’m a very patient person. I listen to long presentations that have only seven minutes of useful content. I nod politely at parties when I have no interest in the topic of the gentleman with the little crudité plate rambles on about whatever it was he was saying. I have children.
But there are some things that cross the line. Go beyond the limit. Stretch the paper- thin fibers of my very last nerve, and then walk across them in football cleats (the American kind of football). I’m sure you have the same items of annoyance as I do, so in the spirit of sharing and making things better for us all, I thought I might cover a few of the egregious assaults against logic and give you some ammunition for that next party when some poor misinformed bore spouts off inaccuracies. For your convenience I have organized them in order of importance and frequency of misuse.
The use of the word “Cloud”
Let’s start with the most horrendous of mistakes, which, as they usually do, started with the Mordor-like department of any company: marketing. It’s the use of the word “cloud”.
Cloud: Noun, English: 4 - something that obscures or blemishes <a cloud of ambiguity> Source: http://www.merriam-webster.com/dictionary/cloud
Computing technology is bound by several well-known scientific principles, including electricity, logic, and the peskiest of all concrete concepts, math. Applying a term that by definition describes something with no permanent structure to a concept which by definition is based on some pretty solid science is something that only the twisted mind of a marketing “professional” can do. You and I might only ever aspire to this level of misnomers.
What makes this howler the worst, and thus placing it at the top of our authoritative list, is the fact that the weaker minds in marketing (that description may be redundant) are influenced by the stronger minds in marketing (that description might be an oxymoron) to spread the misnomer faster than mono at a high-school prom.
Recently I saw an advertisement for a hard drive that was “cloud-enabled”. I assumed that meant it could be used in some sort of computing device hooked to the Internet.
The Proper Response to this Error:
The primary way to combat ignorance is with education. Since I’m a patient man, I take however long it takes to explain to the crudité-plate man that it’s technically Distributed Computing. And then I go on to explain what that means.
Distributed Computing simply means that some or all of the computing components for a system are located somewhere else. Often, these components - say, storage for instance - are also maintained and operated by someone other than you.
"Come on out, you Three Marketeers! Cloud-ready?
You are under arrest for abuse of the language"
This simple definition is far more accurate, and encompasses almost all of the concepts currently used by the Marketeers. (That’s a new term I created - “Marketeers”. It’s like “Mousekateers” (tm Disney) except without as many cool hats, but aimed roughly at the same mental age and with more dancing.)
Once you’ve explained this information to the offending party, if you get a blank stare and the munching on the celery-stick stops, just say “Yay, Cloud!” and crudité-man will blank out the explanation period and just keep using the word “cloud”. But you’ll feel better, having set one more little part of the world right.
Ridiculing the AS’s
On the opposite end of the spectrum is the “The-80’s-called-and-wants- its-T-Shirt-and-Pony-tail-back- you’re-not-really-original-all-Silicon-Valley-self-centered-praise-junkies-are-like-you” über-geek will explain (impatiently) to you that explaining anything to do with Distributed Computing should never be described as “As a Service”. This usually follows a presentation (by you) where you use the following sensible, accurate, easy-to-remember acronyms:
IaaS - Infrastructure as a Service. This means you make a Virtual Machine and host it somewhere. When you host it in your own datacenter, Crudité-man will use the term “private cloud” and when you pay someone else to host it, he’ll call that “public cloud”. See howler 1; or give up and realize you’re not going to fix the “cloud” thing. Just go with it. You know the right term. And that’s enough for you, right?
PaaS - Platform as a Service. This means you write code, deploy it to the PaaS, and it runs. Crudité-man won’t know what this is. Odds are, über-geek won’t either. It’s OK. Soon it will be the way everything runs. über-geek will by then be retired to an emu-farm he bought when his vapor-ware online game platform got bought out by some firm that got a hot tip from Crudité-man who heard about “as a Service” at a party he recently attended.
SaaS - Software as a Service. This means you don’t install anything, you just use it. Like a web-based mail service or search. This is the normal level of engagement for Crudité-man, although he simply refers to this as “the web”.
The Proper Response to this Error:
Keep using the terms. They are as accurate as they need to be, and have the added benefit of further angering/alienating both über-geek and Crudité-man.
Thinking there is only one way to do things
Resistance to new things is something technical professionals mistakenly believe they are immune to. After all, didn’t they stand in line overnight to await the latest telephone that plays music? Don’t they have a remote that locates the TV remote?
So when they hear the words “cloud computing”, the marketing filter engages. When you explain what “cloud computing” really means (see howler 1), the I-fear-change filter engages. Standard-geek has seen these marketing hype cycles before. “N-Tier programming”, “e- (or i-) in front of everything” and flying cars are to Standard-geek the same thing. This Cloud thing will surely pass in the same, whimpering manner.
This is a form of cognitive dissonance. If it is real, and it works, and it’s dramatically different than what I already know how to do; then it threatens me. In fact, it may be a form of outsourcing - and nobody (other than managers) likes that.
The Proper Response to this Error:
No, it won’t go away. This is the way computing will happen, just as surely as companies no longer having large telephone switchboards in the basement. Change is inevitable. You’ll need to find a way to explain this to Standard-geek such that he/she doesn’t begin to hyperventilate excessively. Bring a paper bag.
Explain the process of deep, calming breaths. Explain that everything changes. Explain that this same chain of events happened when we had the last Distributed Computing change - the mainframe era. We are in the start of the next era, and that ain’t Marketeer-speak. It’s real - it is ignored at your own peril.
The most effective way to ease the mind of the overworked, hyper-caffeinated IT professional is that Distributed Computing is merely another way to do something - not necessarily a replacement.
Stuffing what you have today into a distributed environment
Once back from the Yoga class, the Standard-geek will accept his/her fate, and decide this Cloud thing (you may have to repeat howler 1 here) isn’t so bad. In fact, some of them get on board so quickly they take everything they have on-premises (it’s on-premises, y’all, not on-premise - that’s something else) and pile it into one of the three AS’s, considerations notwithstanding. Hilarity (to the outsider, anyway) ensues.
The Proper Response to this Error:
We’ve spent some 20 years getting rid of the mainframe, our first form of Distributed Computing. Change will not (and should not) happen overnight. The proper way to transition is to learn about the AS’s (über-geek just decided to post another acidic response to this article) and then to learn about the business your company does, in addition to your regular job and keeping up with terms like “Cloud” (see howler 1).
Yes, that’s right. Standard-geek is going to have to learn business. ROI’s. Balance Sheets. SALES. Because we technical professionals will no longer be allowed to simply be the magical forest folk that run the little black boxes that steal your soul - nay, nay. We will have to provide actual value - and by that I mean something the pointy-haired C-level folks can grok. And by the way, nobody but us uses the word “grok”, so you may want to drop using that term in e-mails to anyone else.
If the Standard-geek will try to understand a little more about the business, it will be like when you learn French for that trip to the Continent you’ve been planning. Sure, you’ll still get it wrong (you’ll always get French wrong when you’re in France) but the locals might have a little pity on you for trying and actually speak English to you like they could have at the outset, and why do they just try to make you feel uncomfortable just because you’re American?
Where was I going with this - ah yes. Business. You’ll have to learn what your organization does because that way you can apply the right technology mix to the problem at hand. Remember - it’s Distributed Computing (see howler 1) so only one component at a time need be considered to be handled as a service. Since you’ve taken the time to understand both the benefits and costs to both the business and the IT department, you’ll be a trusted resource. But you won’t retire to an emu-farm, because you don’t make that kind of money and you have to pay for a wedding simply because you had a girl. But you’re not bitter.
Refusing to learn
I debated putting this at a higher level, but if someone refuses to learn, they probably stopped reading when they ran into my description of Crudité-man (“I LIKE crudité’s, you jerk!” they are thinking) anyway so it wouldn’t have worked out.
Oddly, I run into this howler all the time. Even with “smart” folks. In fact, “smart” folks are some of the worst. They have been lulled into believing they know what they are doing because their past actions have resulted in some sort of success.
“I don’t need ‘the cloud””, they say (see howler 1) “because of latency/security/vendor trust issues.” In their mind, the conversation is over.
It may come as a shock to these folks, but all knowledge is not final. Things change, evolve, advance, and twist. Distributed Computing is one of those changes.
The Proper Response to this Error:
It is said that many people were quite intimidated by Benjamin Franklin. Not because of his large physical presence, or the fact that he was a better-known scientist than politician. No, it was because in many arguments, he didn’t argue. He asked questions.
Franklin was fascinated by early hot air balloons and carefully observed their launches. When a skeptic asked him "what is the use?" Franklin replied, "What use is a new born baby?" Source.
When someone is smarter than me (which is most everyone) I tend not to make direct statements. I ask questions. If they are smart, their own answers usually bring about the logical thought I’m trying to convey. Also, if it doesn’t, I haven’t made a statement and can thusly change my thoughts to better ones. All for free.
So we start with Marketeers, and end with smart people. I think that’s a decent progression. Just like the Cloud (see howler 1).
<>
"How exciting, it is a Howler letter from that nice Mr Woody. I'm afraid it is for you. Another crudité dear?"
© Simple-Talk.com
Inside Red Gate - Experimental Results
Published Tuesday, January 17, 2012 5:16 PM
As a brief interlude from my Concurrent Collections series, I thought I would give an roundup of how the lean startup experiments have been progressing. As you can expect, there's been some good aspects and some bad aspects.
The experiments so far
After lots of discussions, arguments, posing and ruling out hypotheses, we came up with two 'starter' hypotheses we could test fairly easily:
This is a prequisite for further experimentation. SmartAssembly isn't a webapp, with google analytics and web logs telling us everything. In order to conduct experiments on SmartAssembly, we need to know how customers are using it once it is installed on their machines, and they need to confirm it's ok for us to collect that data. Our current acceptance rate for usage reporting on SmartAssembly itself is quite low, so we needed to improve this for future experiments.
Experiment 1
Hypothesis: Customers don't agree to send data on how they use SmartAssembly because the dialog asking for consent doesn't make it clear the data is all anonymous
The experiment for this is pretty obvious - improve the wording on the consent dialog. This change was applied to SmartAssembly 6.5. We would compare signup rates with 6.2 to see what effect, if any, this change would have.
Result: Inconclusive
We found after 6.5 had been released that we weren't collecting the right data from our download and install process to be able to accurately calculate an acceptance percentage. One of the quirks of the existing feature usage instrumentation is that the answer users give to the consent dialog is used for all future versions of the product with the same major version.
Since 6.5 is a minor version upgrade from 6.2, this means we couldn't differentiate between an existing customer downloading to upgrade from <6.2 to 6.5 (who wouldn't be presented with the new consent dialog), and a new user downloading for the first time. The data we collected couldn't be interpreted one way or the other; there were too many other variables.
Experiment 2
Hypothesis: Customers aren't using feature usage reporting and error reporting within their own applications because those options are swamped amongst all the obfuscation options
To perform this experiment, we produced a version of SmartAssembly that only had merging, signing, feature usage and error reporting available. We only wanted to present this version to customers whom we knew were downloading SmartAssembly for the error and/or feature usage reporting. The only place we could reasonably guarantee this was a reporting-specific landing page. So, the download link on that page would be A/B tested between the reporting-only and standard version of SmartAssembly.
Result: Not enough data
Our limited scope for this test - one specific landing page amongst the many pages on SmartAssembly where customers could download - meant we got very few people downloading the reporting-only version of SmartAssembly; not enough for any conclusion to be drawn one way or the other.
We had also added a 'cop-out' link on the download page so people could guarantee to get the standard version, if they did happen to download the reporting-only version and wonder where all the obfuscation went. We suspect a lot of users clicked this link; unfortunately, it was untracked, so we don't really know.
It's not all bad news...
So, the first experiments we performed didn't really work. However, that doesn't mean they weren't useful. We worked through a lot of the infrastructure issues that restricted our experimentation, and, most importantly, we learnt things:
So what now?
We've decided we're going down the wrong route. We shouldn't be trying to target existing users of SmartAssembly, who are looking primarily for an obfuscation tool, we need to target new users. We've decided to pivot and create a new product, a new website, and a new analytics platform. If you're interested, there are samples of the kind of data you could have on your applications at http://www.applicationmetrics.com, as well as a sign up to receive more information and take part in our experiments.
by Simon Cooper
Filed Under: Inside Red Gate
Great SQL Server Debates: Buffer Cache Hit Ratio
18 January 2012
by Jonathan Kehayias
One of the more popular counters used by DBAs to monitor SQL Server performance, the Buffer Cache Hit Ratio, is useless as a predictor of imminent performance problems. Worse, it can be misleading. Jonathan Kehayias demonstrates this convincingly with some simple tests.
Many years ago, when I first started working with SQL Server, there were a number of performance counters that were on the radar of all conscientious DBAs, and were used to track SQL Server performance and assess the general health of a server. One of those counters was SQLServer:Buffer Manager\Buffer Cache Hit Ratio, described as follows in the Books Online topic for the SQL Server:Buffer Manager Object:
"Percentage of pages found in the buffer cache without having to read from disk. The ratio is the total number of cache hits divided by the total number of cache lookups over the last few thousand page accesses. After a long period of time, the ratio moves very little. Because reading from the cache is much less expensive than reading from disk, you want this ratio to be high. Generally, you can increase the buffer cache hit ratio by increasing the amount of memory available to SQL Server."
Commonly, this definition is interpreted like this: if the value of the Buffer Cache Hit Ratio (BCHR) counter is "high", then SQL Server is efficiently caching the data pages in memory, reads from disk are relatively low, and so there is no memory bottleneck. Conversely, if the BCHR value is "low", then this is a sure sign sign that SQL Server is under memory pressure and doing lots of physical disk reads to retrieve the required data. Prevailing wisdom suggests that "low" is less than 95% for OLTP systems, or less than 90% for OLAP or data warehouse systems.
This article will, I hope, convince you that this interpretation of the BCHR counter value is completely incorrect and very misleading. In fact, I will prove that it's entirely possible for SQL Server to be under significant memory pressure while displaying a value for BCHR that, viewed in isolation, would lead a DBA to assume that SQL Server was in fine heath. At the same time, I'll demonstrate that there are far better counters for tracing memory usage patterns in SQL Server and for diagnosing potential memory issues.
As a consultant, the BCHR is one performance counter that I never use in my work, and I stopped using it as soon as I discovered exactly why its value can be so misleading, and how misguided were the prevailing ideas about its meaning.
Necessary memory-related counters
In my recent book on Troubleshooting SQL Server, I stress time and again that no single piece of information should be relied on to accurately diagnose a SQL Server problem. Unfortunately, many DBAs still do regard the BCHR counter value, viewed in isolation, as a useful indicator of the heath of a SQL Server. Not only does this lead people to misdiagnose SQL Server performance, it also means that they are ignoring counters that could give vital supporting evidence, and in fact are often much more effective at tracking down memory issues. These memory counters, all belonging to the SQLServer:Buffer Manager object, include the following (definitions extracted from the previous Books Online link):
Consider, for example, the SQLServer:Buffer Manager\Page reads/sec counter. Without full knowledge of what the BCHR counter value really means, it seems reasonable to assume that if the BCHR value is high, then the Page reads/sec counter value should be low, since the high BCHR means that we don't have to hit disk to retrieve the required data, right? Let's find out!
Set up: databases, tables, memory counters and a load generator
To investigate the true nature of the BCHR, we'll need to perform some tests on an isolated instance of SQL Server. In my tests, I used a dedicated VM, with SQL Server Agent in a stopped state, and no other activity on at all on the instance, aside from the tests themselves.
To follow along with this demo, you'll need to install on your test instance the AdventureWorks and AdventureWorks2008R2 databases, both downloadable from Codeplex. In addition, you'll need to run the script in Listing 1 to create the LowBCHR test database, and in it a sample table, TestTable, of a known size.
CREATE DATABASE [LowBCHR]
GO
ALTER DATABASE [LowBCHR] SET RECOVERY SIMPLE
GO
USE LowBCHR
GO
CREATE TABLE TestTable
(
RowID BIGINT IDENTITY
PRIMARY KEY ,
JoinVal BIGINT DEFAULT (0)
NOT NULL ,
DateChange DATETIME2 DEFAULT (CURRENT_TIMESTAMP)
NOT NULL ,
DataCol NCHAR (500) DEFAULT ('BCHR')
)
GO
BEGIN TRANSACTION
DECLARE @i INT = 1
WHILE @i <= 30000
BEGIN
INSERT INTO TestTable
(JoinVal)
VALUES (@i % 10)
SET @i = @i + 1
END
COMMIT TRANSACTION
CHECKPOINT
GO 40
Listing 1: Creating the sample LowBCHR database and TestTable table
This TestTable table is larger than 1GB in size, as confirmed in Listing 2, using the sp_spaceused built-in stored procedure.
-- Get table space usage
EXEC sp_spaceused 'TestTable'
GO
Listing 2: TestTable is over 1GB in size
In Listing 3, we set 'max server memory' option on the instance to 1024 MB, a value lower than the size of the table, meaning that SQL Server can't cache the whole table in memory. We then clear all the caches on the instance so that we have a cold system against which to run our tests.
-- Save this value to reset it after testing
SELECT value_in_use AS original_max_server_memory
FROM sys.configurations
WHERE name = 'max server memory (MB)'
GO
-- Reduce BPool to 1GB, smaller than our table
EXEC sys. sp_configure N'show advanced options' , N'1'
RECONFIGURE WITH OVERRIDE
GO
EXEC sys. sp_configure N'max server memory (MB)' , N'1024'
GO
RECONFIGURE WITH OVERRIDE
GO
EXEC sys. sp_configure N'show advanced options' , N'0'
RECONFIGURE WITH OVERRIDE
GO
-- Clear all caches on the server
DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS
DBCC FREESYSTEMCACHE ('ALL')
GO
Listing 3: Setting max server memory to 1024 MB and clearing the caches
Next, we need to generate our performance counter collection set in Windows, in order to capture the BCHR values, along with the Page reads/sec counter values, and those of Free Pages, Page Life Expectancy, and Free List Stalls/sec, all from the SQLServer: Buffer Manager object.
Figure 1: Setting up the performance counter collection set in Windows
With the collection set created we are ready to begin logging the counter values, as we execute various SQL loads against the instance. In my test, I generated this load using a tool called SQL Load Generator, which is freely downloadable from Codeplex. If you wish to follow along, you'll need to download this tool, or something similar (if you don't want to install a tool you may be able to achieve similar effects using the GO x trick and lots of SSMS tabs!)
Testing the behavior of BCHR
We'll run a series of tests to investigate the behavior of BCHR, under various workloads and conditions. A variable query load, comprising three queries, will be executed against three different databases. In these tests, the load was generated using the previously-referenced SQL Load Generator tool. The query in Listing 4 will be executed against both the AdventureWorks and AdventureWorks2008R2 databases.
SELECT *
FROM Sales.SalesOrderHeader AS soh
JOIN Sales.SalesOrderDetail AS sod
ON soh.SalesOrderID = sod.SalesOrderID ;
Listing 4: The query against AdventureWorks and AdventureWorks2008R2
This will be the "base" workload in our tests. When we need create some memory pressure, we'll introduce to the workload the query in Listing 5, which executes against TestTable in our LowBCHR database.
SELECT SUM (t1.RowID) ,
SUM (t2.JoinVal)
FROM TestTable AS t1
JOIN TestTable AS t2 ON t1.RowID = t2.JoinVal ;
Listing 5: The query against the LowBCHR database
Test 1: Behavior under base test load
With the system still idle, start the performance counter data collection; the counter values should be stable at this point.
Figure 2: Initial, stable values of the performance counters
BCHR will be at 100%, Free Pages will be high (it depends on your specific system, but on the test system it was in the 128,602 range after freeing the caches), and Page Life Expectancy will increase by one for each second that passes (the starting value on my test system was 1034).
To create our initial workload, the query in Listing 4 will be run against AdventureWorks and AdventureWorks2008R2. This will cause roughly 20MB per database to be read from disk into the buffer pool.
Figure 3: Starting the initial data load (click through for detail)
When the queries begin execution, you should see an initial dip in the BCHR value, on the instance, and a corresponding spike in page reads/sec, as the required pages are read from disk, into the buffer cache, as shown in the data collected by Performance Monitor (Figure 4).
Figure 4: Memory counter behavior under initial load
However, the Page Life Expectancy continues to increase by a value of one every second and, even though the two queries continue to execute against the databases, the system shows near-zero impact aside from that initial drop in BCHR.
Test 2: Behavior under maximum test load
The behavior observed in the initial test is what people generally expect with regards to BCHR value, and it shapes many people's understanding of what the value is telling them. If this is the case with you, then prepare for a shock as, alongside our other two queries, we start up the third query against our LowBCHR database, and generate some serious memory pressure!
The TestTable query (Listing 5) is going to require a full scan of the table, and the table is larger than the available buffer pool size, because we constrained 'max server memory' to 1GB. Bear in mind that the queries against the AdventureWorks and AdventureWorks2008R2 tables will also be competing for this 1 GB of buffer pool memory.
With the other queries still running, introduce to the load the TestTable query, simulating five concurrent sessions executing the query. The impact on our counter values is shown in Figure 5.
Figure 5: Memory counter behavior under memory pressure
Imagine for a second that we were only monitoring the BCHR value; as you can see, it shows barely a blip, staying comfortably above the "recommended" 95% value the entire time. According to this, our server is just fine.
The other counters, however, reveal the true story: our server is under significant memory pressure and experiencing constant data cache churn, as evidenced by the fact that Page Life Expectancy bottoms out at 0 to 1, the number of page reads/sec skyrockets, and the number of Free Pages fluctuates but is generally below 200 for the duration of the test. Figure 6 shows a snapshot report of each counter value, at some point during the test.
Figure 6: Snapshot counter values during Test 2
So why does the BCHR counter value fail to respond to the memory pressure? The reason is that the read-ahead mechanism in SQL Server, is keeping our buffer cache populated with the required pages. As long as the disk array can keep up with the I/O demands of the query workload, and the read-ahead I/Os can read the data in large enough blocks to keep the data churning in cache, then the required data will continue to be found in cache, rather than on disk, at the point that it is needed during the query's execution by the query processor. As such, the BCHR will remain above 95%.
Test 3: Behavior under base test load with read-ahead disabled
The results of the previous test demonstrates that all the BCHR value really tells us is whether or not the read-ahead mechanism is operating efficiently; it tells us nothing of the memory pressure, and buffer cache churn, that the server may be experiencing.
To prove this, we can disable the read-ahead mechanism in SQL Server using Trace Flag 652, and then rerun our tests. Alternatively, we could also place our LowBCHR database on an incredibly slow disk array, for example a USB thumb drive, instead of the internal SSDs in my laptop, to significantly reduce the I/O throughput available for read-ahead operations.
To prepare for this test, flush the data caches once again using the relevant code from Listing 3, and then capture another initial counter baseline for the instance, as shown in Figure 7, which was taken after waiting a few minutes to allow the Page Life Expectancy to recover.
Figure 7: Initial counter baseline for Test 3
As soon as we enable Trace Flag 652 for the entire instance, using DBCC TRACEON(652, -1), we take a hit on the BCHR that is higher than any of the previous hits taken during our tests, as shown in Figure 8. The cause of this dip isn't entirely clear (since there is no activity on the server at this stage) but it is reproducible.
Figure 8: Perform counter value variation upon enabling Trace Flag 652
Wait a few minutes to allow the BCHR value to recover and then, in SQL Load Generator, start the two queries against AdventureWorks and AdventureWorks2008R2, as per Test 1 (Figure 3).
The dip in the BCHR value is bigger than we observed in Test 1, but it recovers quickly, as shown in Figure 9.
Figure 9: Memory counter values: behavior under base load, with read-ahead disabled
Test 4: Behavior under increased load (read-ahead disabled)
With the two queries still running, start the third query against TestTable, but using only a single session, as shown in Figure 10.
Figure 10: Introducing the TestTable query to the workload (1 session)
This time, with page read-ahead disabled, the BCHR value for the instance drops below the accepted value (to a value of around 90-91% in my tests), and remains there for the duration of the test. Figure 11 was taken after running the three queries for nearly 20 minutes.
Figure 11: Memory counter values after 20 mins increased load, with read-ahead disabled
Test 5: Behavior under maximum test load (read-ahead disabled)
Finally, let's up the memory pressure one more notch, by changing the setup of the SQL Load Generator to use five concurrent sessions for the TestTable query, replicating the conditions of our "maximum load" in Test 2.
Figure 12: Maximum TestTable workload (5 concurrent sessions)
Remember that under this same load, with read-ahead enabled, we saw almost no impact on the values of the BCH counter. Performing the same test with read-ahead disabled, the impact on the BCHR value is very significant. As soon as multiple copies of the TestTable query are running concurrently, without read ahead enabled, the BCHR value bottoms out and never recovers completely. As shown in Figure 13, it is consistently low and has multiple near zero values that occur for long durations. In conjunction with the behavior of the other counter values (very high page reads/sec, zero page life expectancy) this indicates, that for certain periods, the query processor is having to wait entirely on the pages to be read from disk and into cache, in order to execute any of the 15 concurrent requests in the test workload.
Figure 13: Memory counter values under maximum test load (read-ahead disabled)
My laptop test machine has a quad core i7 processor and dual solid state drives, with very low latency I/O response, but even so, as a result of the memory pressure and without the benefits of read ahead I/O operations, the pages generally weren't in memory before they were required by the query processor for execution. In these tests, the I/O for the LowBCHR database was consistently 8K average per read (although this isn't to suggest that there might not be conditions where it is still possible to get to get multi-page I/O or extent based I/O).
Figure 14: With read-ahead disabled we see 8K average per read
If we re-enable read ahead with DBCC TRACEOFF(652, -1), the BCHR value once again returns to the 'acceptable' range.
Figure 15: Recovery of counter values, upon re-enabling read-ahead
Conclusions
Many people continue to track the value of Buffer Cache Hit Ratio, as an "early-warning" of any potential memory issues on a SQL Server instance. What these tests prove, I hope, is that, in this regard, the value of BCHR is more or less meaningless. BCHR only responds to significant memory pressure in conjunction with I/O subsystem pressure, or possibly fragmentation i.e. under conditions that impedes page read-ahead to the point that SQL Server becomes much less effective at populating the data cache with the required pages, before the query processor actually requires them for use.
To put it another way, the BCHR early warning alert is only raised once the house is already burning down. At the point that the BCHR has sustained values below 95 for an OLTP workload, the server has been experiencing significant performance problems for a long time, and the use of the other counters on the system would have yielded better results for diagnosing the problem.
© Simple-Talk.com
Table of Contents
Close Those Loopholes: Lessons learned from Unit Testing T-SQL
The benefits and costs of automated database testing
Lessons Learned
Trivial modules usually don't need tests
Integration tests are vital
Add tests gradually
Requirements for the test databases
Adding the first tests: Clarifying the requirements
Matching actual test results against expected
Everything must be verified in all cases
When a test fails, it must provide full details
Expected results should be generated and stored separately
Developing tests defensively
Implementing the testing framework
Choosing an existing testing tool vs. implementing our own
Choosing the testing language
Conclusion
The 'Close Your Loopholes' series of articles on Unit Testing TSQL code.
It always works on my machine.
TortoiseSVN and Subversion Cookbook Part 3: In, Out, and Around
Putting Things In
Setting up a new repository
Grafting a subtree or importing a whole tree into a repository
Taking Things Out
Copying a working copy without the .svn files
Converting a working copy to an unversioned tree
Unversioning specific files
Unversioning all files of a specific type (or other criteria)
Removing your working copy
Doing a sparse checkout
Repository Concerns
Deploying Subversion for a single-user installation
Reconnecting to a relocated repository
Indexing - take the hint and leave it to the experts
Relational Databases and Solid State Memory: An Opportunity Squandered?
References
5 reasons why I almost loved WPF
1 - Binding
2 - Pretty
3 - Separation of UI and Engine
4 - CSS style re-use
5 - XML
Conclusion
The use of the word “Cloud”
The Proper Response to this Error:
Ridiculing the AS’s
The Proper Response to this Error:
Thinking there is only one way to do things
The Proper Response to this Error:
Stuffing what you have today into a distributed environment
The Proper Response to this Error:
Refusing to learn
The Proper Response to this Error:
Inside Red Gate - Experimental Results
Great SQL Server Debates: Buffer Cache Hit Ratio
Test 1: Behavior under base test load
Test 2: Behavior under maximum test load
Test 3: Behavior under base test load with read-ahead disabled
Test 4: Behavior under increased load (read-ahead disabled)
Test 5: Behavior under maximum test load (read-ahead disabled)