Simple-Talk Editorial Team
Going for Gold
Published 23 November 2012 4:33 pm
There was a spring in the step of some members of our development teams here at Red Gate, on hearing that on five gold awards at 2012′s SQL Mag Community and Editors Choice Awards. And why not? It’s a nice recognition that their efforts were appreciated by many in the SQL Server community.
The team at Simple-Talk don't tend to spring, but even we felt a twinge of pride in the fact that SQL Scripts Manager received Gold for Editor’s Choice in the Best Free Tools category. The tool began life as a “Down Tools” project and is one that we’ve supported and championed in various articles on Simple-talk.com.
Over a Cambridge Bitter in the Waggon and Horses, we've often reflected on how nice it would be to nominate our own awards. Of course, we’d have to avoid nominating Red Gate tools in each category, even the free ones, for fear of seeming biased, Â but we could still award other people’s free tools, couldn’t we?
So allow us to set the stage for the annual Simple-Talk Community Tool awards"
Onto the platform we shuffle, to applause from the audience; Chris in immaculate tuxedo, Alice in stunning evening gown, Dave and Tony looking vaguely uncomfortable, Andrew somehow distracted, as if his mind is elsewhere.
Tony strides up to the lectern, and coughs lightly- "”In the free-tool category we have the three nominations, and they are…” (rustle of the envelope opening)
“Before we declare the winner, I’d like to say a few words in recognition of a grand tradition in a SQL Server community that continues to offer its members a steady supply of excellent, free tools. It hammers home the fundamental principle that a tool should solve a single, pressing and frustrating problem, but you should only ever build your own solution to that problem if you are certain that you cannot buy it, or that someone has not already provided it free. We have only three finalists tonight, but I feel compelled to mention a few other tools that we also use and appreciate, such as Microsoft’s Logparser, Open source Curl, Microsoft's TableDiff.exe, Performance Analysis of Logs (PAL) Tool, SQL Server Cache Manager and SQLPSX.”
“And now I’ll hand over to Alice to announce the winner.”
Alice strides over to the microphone, tearing open the envelope.
“The winner,” she pauses for dramatic effect “" is "Ola Hallengren’s SQL Server Maintenance Solution!” Queue much applause and consumption of champagne. Did we get it wrong? What free tool would you nominate? Let us know!
Cheers,
Simple-Talk Editorial Team (Andrew, Alice, Chris, Dave, Tony)
Leave a Reply
You must be logged in to post a comment.
Fixing Gatekeeper Row Cardinality Estimate Issues
01 November 2012
by Joe Sack
The Query Optimiser needs a good estimate of the number of rows likely to be returned by each physical operator in order to select the best query plan from the most likely alternatives. Sometimes these estimates can go so wildly wrong as to result in a very slow query. Joe Sack shows how it can happen with SQL Queries on a data warehouse with a star schema.
The SQL Server Query Optimizer needs to estimate the number of rows that are processed for each physical operator in a query plan. These row estimates are referred to as cardinality estimates and are required in order to then calculate the cost models of the query plan operators. If these cardinality estimates are inaccurate, the Query Optimizer is less likely to choose the most appropriate execution plan for the query, and so the performance of the query’s execution is likely to be slower.
There are a variety of reasons for a poor cardinality estimate, and this article will focus on just one of the more complex reasons, affecting the “gatekeeper row” cardinality estimate.
Gatekeeper Row Scenario
We will illustrate this by using a query executed against the AdventureWorksDW2012 database:
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimCurrency] AS [c]
ON [fis].[CurrencyKey] = [c].[currencykey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [c].[CurrencyName] = N'United Kingdom Pound'
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
The query references one fact table and three separate dimension tables. The abridged relationship diagram is below (click for full size):
What kind of cardinality estimates do we see and how do they compare to the actual rows? For this article, I was using SQL Server 2012 version 11.0.2316 and I saw the following estimated and actual row counts:
Rows | Estimated Rows | StmtText |
12 | 22.17362 | |--Sort(ORDER BY:([od].[CalendarYear] ASC, [p].[ProductLine] ASC)) |
12 | 22.17362 | |--Hash Match(Aggregate, HASH:([od].[CalendarYear], |
6740 | 7936.583 | |--Hash Match(Inner Join, |
606 | 606 | |--Clustered Index |
6740 | 8466.041 | |--Hash Match(Inner Join, |
2191 | 2191 | |--Clustered Index |
6740 | 10066.33 | |--Hash Match(Inner Join, |
1 | 1 | |--Clustered Index |
60398 | 60398 | |--Clustered Index |
The clustered index scan of FactInternetSales shows that the estimated rows are equal to actual rows. This represents the total row count from that table, which was 60,398 rows. The estimated and actual row counts are also identical for the clustered index scan of the DimCurrency table, which makes sense given the “United Kingdom Pound” search condition for the CurrencyName column.
The DimCurrency has 105 rows in it. But that doesn’t mean that FactInternetSales has rows for every possible CurrencyKey. In reality, the FactInternetSales has the following distribution of rows by currency, as we can determine by using this query:
SELECT [c].[CurrencyName],
COUNT(*) AS [RowCount]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimCurrency] AS [c]
ON [fis].[CurrencyKey] = [c].[currencykey]
GROUP BY [c].[CurrencyName]
ORDER BY [c].[CurrencyName];
GO
As you can see, most currencies are not represented in FactInternetSales.
Given this, what happens if we change the previous query to reference a currency that has no associated rows? For example, switching to the Pakistan Rupee currency?
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimCurrency] AS [c]
ON [fis].[CurrencyKey] = [c].[currencykey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [c].[CurrencyName] = N'Pakistan Rupee'
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
The cardinality estimates versus actual now appear as follows:
Rows | Estimated Rows | StmtText |
0 | 22.17362 | |--Sort(ORDER BY:([od].[CalendarYear] ASC, [p].[ProductLine] ASC)) |
0 | 22.17362 | |--Hash Match(Aggregate, HASH:([od].[CalendarYear], |
0 | 7936.583 | |--Hash Match(Inner Join, |
606 | 606 | |--Clustered Index |
0 | 8466.041 | |--Hash Match(Inner Join, |
2191 | 2191 | |--Clustered Index |
0 | 10066.33 | |--Hash Match(Inner Join, |
1 | 1 | |--Clustered Index |
60398 | 60398 | |--Clustered Index |
As with the original query, the clustered index scan of FactInternetSales shows that the estimated rows are equal to the actual rows. This represents the total row count from that table, which was 60,398 rows. The estimated and actual row counts are also identical for the clustered index scan of the DimCurrency table, showing a value of “1” representing the search on Pakistan Rupee in the CurrencyName column.
What about the Hash Match operation between the two tables? Our previous example had 10,066 (estimated) versus 6,740 (actual). But with our new query using a currency that does not exist in the fact table, our estimate is still 10,066 and actual number of rows this time is 0.
So a gatekeeper row, in this context, represents a dimension row that will let several fact table rows through to the parent operators when selected via the presence or absence of a search condition. When the gatekeeper dimension row is not present, the fact table rows are ultimately not passed through to the final result set, but yet the cardinality estimate issue remains.
I can exacerbate the problem with this cardinality estimate by modifying all the rows in the fact table to the same currency, the Yen in our case, with this simple statement (and if you’re trying this out yourself, be sure to back up your AdventureWorksDW2012 database beforehand so you can revert back afterwards):
-- Setting all Fact table rows to the Yen currency
UPDATE [dbo].[FactInternetSales]
SET [CurrencyKey] = 102;
GO
Once I have done this and we now have only Yen, I see the following estimated rows vs. actual rows if I execute the previous query that references the Pakistan Rupee.
Rows | Estimated Rows | StmtText |
0 | 22.04758 | |--Stream Aggregate(GROUP BY:([od].[CalendarYear], |
0 | 23.5184 | |--Sort(ORDER BY:([od].[CalendarYear] ASC, [p].[ProductLine] |
0 | 23.5184 | |--Nested Loops(Inner Join, OUTER |
12 | 88.19033 | |--Hash Match(Aggregate, HASH:([fis].[CurrencyKey], |
60398 | 47348.81 | | |--Hash |
606 | 606 | | |--Clustered Index |
60398 | 50507.5 | | |--Hash Match(Inner Join, |
2191 | 2191 | | |--Clustered Index |
60398 | 60398 | | |--Clustered Index |
0 | 1 | |--Clustered Index |
This time the Query Optimizer re-arranged the order in which the tables were joined. This new plan started with a hash join between DimDate and FactInternetSales, followed by a hash join to DimProduct, and then finally a nested loop join to DimCurrency. The estimated row count of the nested loop operation is 24 vs. the actual 0 row count. So we see that we are not filtering out the FactInternetSales rows early in the plan, even though no rows are ultimately returned.
Increasing the Scale of the Problem
Why is all of this important? It is because, with a real relational data warehouse database of any scale, the performance will be noticeable impacted. The problem is that the Query Optimizer isn’t aware that there are zero qualifying rows in the Fact table. The query plan generates unnecessary reads in the leaf level of the execution plan and then passes the pre-filtered rows to the intermediate levels of the plan tree and is not filtered down until later steps. Our current database is small, but the consequences of these cardinality estimate issues become more pronounced with larger tables.
To demonstrate the impact at a larger scale, I’m going to increase the size of the FactInternetSales table to 3,865,472 rows:
-- Increase size of table to 3,865,472 rows
INSERT [dbo].[FactInternetSales]
([ProductKey] ,
[OrderDateKey] ,
[DueDateKey] ,
[ShipDateKey] ,
[CustomerKey] ,
[PromotionKey] ,
[CurrencyKey] ,
[SalesTerritoryKey] ,
[SalesOrderNumber] ,
[SalesOrderLineNumber] ,
[RevisionNumber] ,
[OrderQuantity] ,
[UnitPrice] ,
[ExtendedAmount] ,
[UnitPriceDiscountPct] ,
[DiscountAmount] ,
[ProductStandardCost] ,
[TotalProductCost] ,
[SalesAmount] ,
[TaxAmt] ,
[Freight] ,
[CarrierTrackingNumber] ,
[CustomerPONumber] ,
[OrderDate] ,
[DueDate] ,
[ShipDate]
)
SELECT [FactInternetSales].[ProductKey] ,
[FactInternetSales].[OrderDateKey] ,
[FactInternetSales].[DueDateKey] ,
[FactInternetSales].[ShipDateKey] ,
[FactInternetSales].[CustomerKey] ,
[FactInternetSales].[PromotionKey] ,
[FactInternetSales].[CurrencyKey] ,
[FactInternetSales].[SalesTerritoryKey] ,
LEFT(CAST(NEWID() AS NVARCHAR(36)), 20) ,
[FactInternetSales].[SalesOrderLineNumber] ,
[FactInternetSales].[RevisionNumber] ,
[FactInternetSales].[OrderQuantity] ,
[FactInternetSales].[UnitPrice] ,
[FactInternetSales].[ExtendedAmount] ,
[FactInternetSales].[UnitPriceDiscountPct] ,
[FactInternetSales].[DiscountAmount] ,
[FactInternetSales].[ProductStandardCost] ,
[FactInternetSales].[TotalProductCost] ,
[FactInternetSales].[SalesAmount] ,
[FactInternetSales].[TaxAmt] ,
[FactInternetSales].[Freight] ,
[FactInternetSales].[CarrierTrackingNumber] ,
[FactInternetSales].[CustomerPONumber] ,
[FactInternetSales].[OrderDate] ,
[FactInternetSales].[DueDate] ,
[FactInternetSales].[ShipDate]
FROM [dbo].[FactInternetSales];
GO 6 -- Executes this INSERT 6 separate times
I’ve inflated the size based on the modified data which had all rows associated with just one currency key. My gatekeeper dimension row is CurrencyKey = 102. If I reference this specific key, then millions of fact table rows will need to be accessed, whereas any other value of CurrencyKey, assuming equality search conditions, will cause no rows to be returned from the Fact table.
Re-executing the query that referenced the Pakistan Rupee, the following plan is generated (show via SQL Server Plan Explorer - click for full size):
The first observation is that the plan is now executed with parallel operations. This is an artifact of the increase in the number of fact table rows and associated cost.
The second observation is that millions of rows are flowing through the plan tree and only narrowing down until it is roughly 2/3rds through the plan. The associated estimated vs. actual row counts continue to be skewed and the Query Optimizer doesn’t know that all rows in FactInternetSales only have one CurrencyKey value. The DimCurrency table is not evaluated until very late in the plan:
Rows | Estimate Rows | StmtText |
0 | 21.11082 | |--Stream Aggregate(GROUP BY:([od].[CalendarYear], |
0 | 22.51457 | |--Parallelism(Gather Streams, ORDER BY:([od].[CalendarYear] |
0 | 22.51457 | |--Nested Loops(Inner Join, OUTER |
12 | 84.44327 | |--Sort(ORDER BY:([od].[CalendarYear] ASC, [p].[ProductLine] |
12 | 84.44327 | | |--Hash Match(Aggregate, HASH:([fis].[CurrencyKey], |
3865472 | 2900982 | | |--Parallelism(Repartition Streams, Hash Partitioning, |
3865472 | 2900982 | | |--Hash Match(Inner Join, |
606 | 606 | | |--Bitmap(HASH:([p].[ProductKey]), |
606 | 606 | | | |--Parallelism(Repartition Streams, |
606 | 606 | | | |--Clustered Index |
3865472 | 2900982 | | |--Parallelism(Repartition Streams, Hash Partitioning, |
3865472 | 2900982 | | |--Hash Match(Inner Join, |
2191 | 2191 | | |--Bitmap(HASH:([od].[DateKey]), |
2191 | 2191 | | | |--Parallelism(Repartition Streams, Hash Partitioning, |
2191 | 2191 | | | |--Clustered Index |
3865472 | 2900982 | | |--Parallelism(Repartition Streams, Hash Partitioning, |
3865472 | 3865472 | | |--Clustered Index |
0 | 1 | |--Clustered Index |
Why Care?
So what are the consequences of this? There are a few reasons that stand out for the problem that I’ve illustrated:
If you look at the Showplan XML of the previously executed query, there are additional details of the memory grant requirements:
<MemoryGrantInfo
SerialRequiredMemory="3072"
SerialDesiredMemory="9464"
RequiredMemory="30400"
DesiredMemory="36800"
RequestedMemory="36800"
GrantWaitTime="0"
GrantedMemory="36800"
MaxUsedMemory="12816"/>
This runtime memory grant information was introduced in SQL Server 2012. The serial plan memory attributes SerialRequiredMemory and SerialDesiredMemory refer to non-parallel plans. The other attributes refer to the query in its current execution state, which in this case used parallel operations.
The requested and actual memory was 36,800 KB. And what if multiple concurrent requests were attempting to execute queries with similar cardinality estimate issues? At a certain point, you may end up seeing waits for memory grants. Cardinality estimate issues can cause the requested query execution memory grant to be significantly inflated. If concurrency is important, bad cardinality estimates can hamper your overall workload throughput.
Problems with cardinality estimates can also produce excessive read I/O requests. For example, dropping all clean buffers (in a non-production environment, of course) prior to executing the previous query shows that more than 165,061 pages got loaded into the buffer pool – even though no rows were ultimately returned in my query:
-- Not for production use
DBCC DROPCLEANBUFFERS;
GO
-- Execute the query here
SELECT COUNT(*) AS [BufferCount]
FROM sys.[dm_os_buffer_descriptors];
Executing SET STATISTICS IO ON also shows the overall I/O impact of the query (abridged results):
Table 'FactInternetSales'. Scan count 9, logical reads 167112, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
And I’m not even mentioning the CPU overhead that is so tightly associated with I/O operations. As you can see, when estimates are off, it impacts query performance, resource utilization, and concurrency.
Solutions
Cardinality estimate issues can occur for a variety of different reasons and so there are a variety of different solutions which include, amongst others:
The problem with the gatekeeper row cardinality estimate is particularly interesting because the standard solutions aren’t usually helpful.
One way to approach this problem is to help the Query Optimizer understand more explicitly the cardinality of the gatekeeper column in the fact table itself, without relying on the byproduct of the Fact-to-Dimension join operation. For example:
-- CurrencyKey 75 = Pakistan Rupee
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [fis].[CurrencyKey] = 75
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
I removed the INNER JOIN to DimCurrency and instead directly referenced a search condition for the fact table CurrencyKey. Given this direct predicate on the foreign key reference, the query execution plan shape changed significantly (click for larger version):
The estimated vs. actual row skew was also eliminated (remember that the estimates feed the cost model, so the plan is directly impacted by good or bad estimates) and large sets of rows were no longer being propagated up the tree:
If you are using a stored procedure to encapsulate the query, you could choose to pass the parameter in for direct use in the fact table predicate:
CREATE PROCEDURE [dbo].[ProductLineSales_by_CalendarYear]
@CurrencyKey INT
AS
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [fis].[CurrencyKey] = @CurrencyKey
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
However, you do need to be extremely careful about parameter sniffing in this case. For example, if I execute the non-gatekeeper row parameter first (initial compilation) followed by a gatekeeper row parameter, the non-gatekeeper plan gets used for consecutive executions, resulting in greatly diminished performance, and tempdb spills on the sort operator:
-- Pakistan Rupee currency
EXECUTE [dbo].[ProductLineSales_by_CalendarYear] 75;
GO
-- Yen currency
EXECUTE [dbo].[ProductLineSales_by_CalendarYear] 102;
GO
Also, a sub-query providing the CurrencyKey does not achieve the same results as when I directly provided the literal value. The following query uses the non-optimal plan that had the original cardinality estimate issues:
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis]
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [fis].[CurrencyKey] =
(SELECT [CurrencyKey]
FROM [dbo].[DimCurrency]
WHERE [CurrencyName] = N'Pakistan Rupee')
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
Another solution to consider is the use of a covering nonclustered index along with an INDEX and/or FORCESEEK hint. By default I’m not a fan of using hints but, when tackling a problem with the gatekeeper row cardinality estimate, it may be one of the few options available to you.
In the following example, I create a covering index on the columns referenced for join conditions and an INCLUDE column for my sales amount:
CREATE NONCLUSTERED INDEX IX_FIS_CurrencyKey_ProductKey_DateKey
ON [dbo].[FactInternetSales]([CurrencyKey], [ProductKey], [OrderDateKey])
INCLUDE ([SalesAmount]);
GO
Adding this index will not, by itself, solve the problem. In my testing, the Query Optimizer still chose to perform a large scan of the Fact table. But adding the covering index in conjunction with a FORCESEEK hint was effective:
SELECT [od].[CalendarYear] ,
[p].[ProductLine] ,
SUM([fis].[SalesAmount]) AS [SalesAMT]
FROM [dbo].[FactInternetSales] AS [fis] WITH (FORCESEEK)
INNER JOIN [dbo].[DimProduct] AS [p]
ON [fis].[ProductKey] = [p].[ProductKey]
INNER JOIN [dbo].[DimCurrency] AS [c]
ON [fis].[CurrencyKey] = [c].[currencykey]
INNER JOIN [dbo].[DimDate] AS [od]
ON [fis].[OrderDateKey] = [od].[DateKey]
WHERE [c].[CurrencyName] = N'Pakistan Rupee'
GROUP BY [od].[CalendarYear] ,
[p].[ProductLine]
ORDER BY [od].[CalendarYear] ,
[p].[ProductLine];
GO
The Query Optimizer chose to join the DimCurrency and FactInternetSales tables first and the cardinality estimates were accurate (abridged query plan below):
Another potential solution to consider if you’re running on SQL Server 2012 Enterprise Edition is columnstore indexes. While using columnstore indexing doesn’t fix the cardinality estimate issues, it is able to side-step them in some scenarios due to leveraging columnar storage in combination with batch-execution mode processing:
-- Drop nonclustered index in order to eliminate QO tempting choices
DROP INDEX IX_FIS_CurrencyKey_ProductKey_DateKey
ON [dbo].[FactInternetSales];
GO
-- Covering all supported data type columns
CREATE NONCLUSTERED COLUMNSTORE INDEX [NCI_CSI_FactInternetSales] ON
[dbo].[FactInternetSales]
(
[ProductKey],
[OrderDateKey],
[DueDateKey],
[ShipDateKey],
[CustomerKey],
[PromotionKey],
[CurrencyKey],
[SalesTerritoryKey],
[SalesOrderNumber],
[SalesOrderLineNumber],
[RevisionNumber],
[OrderQuantity],
[UnitPrice],
[ExtendedAmount],
[UnitPriceDiscountPct],
[DiscountAmount],
[ProductStandardCost],
[TotalProductCost],
[SalesAmount],
[TaxAmt],
[Freight],
[CarrierTrackingNumber],
[CustomerPONumber],
[OrderDate],
[DueDate],
[ShipDate]
)WITH (DROP_EXISTING = OFF)
GO
If you execute the original, problematic query using the non-gatekeeper row, a plan is selected that now leverages the columnstore index and results in a fast execution (abridged query plan - click to enlarge):
Notice that the 3,865,472 rows associated with the columnstore index scan are quickly narrowed down in the parent operator, even though the cardinality estimate for the scan and parent repartition-stream operator are significantly skewed compared to the actual row count:
Even though we didn’t eliminate the cardinality estimate issues, the plan had far less I/O impact, and thus far less buffer pool impact. The memory grant requests, however, actually increase in size:
<MemoryGrantInfo
SerialRequiredMemory="7680"
SerialDesiredMemory="13264"
RequiredMemory="66448"
DesiredMemory="72080"
RequestedMemory="72080"
GrantWaitTime="0"
GrantedMemory="72080"
MaxUsedMemory="8776"/>
While columnstore indexing comes with significant potential performance benefits, there are trade-offs, such as making your table read-only for non-partition switch related data modifications. Not all queries can benefit from columnstore indexing, but if your gatekeeper-row issue is associated with a standard, relational data-warehouse query, you may want to consider exploring this option. You may find that a columnstore index solution requires far less refactoring of your queries and associated schema than other potential solutions.
Summary
Gatekeeper-row cardinality estimation issues can be difficult to spot because they are driven by the changing characteristics of your relational data warehouse. Look for actual and estimated row skews across operators in a star-schema query. If that skew is associated with a dimension row that significantly influences the rows that are returned from the fact table, you may need to refactor your queries in order to help the Query Optimizer to properly estimate cardinality. Other potential solutions include the use of a covering nonclustered index with indexing hints, and also the use of a columnstore index which, while not resolving the cardinality estimate issue, may compensate by virtue of the performance optimizations that are inherent to its architecture.
© Simple-Talk.com
Database Deployment: The Bits - Getting Data In
05 November 2012
by Phil Factor
Quite often, the database developer or tester is faced with having to load data into a newly created database. What could be simpler? Quite a lot of things, it seems.
This article is about how to stock an empty database with data from files.
Why?
There are a number of reasons for wanting to do this. I’ll explain why I do it. When I’m developing databases, source control will contain everything in the way of scripts that I need to build the databases, but I like to build them regularly, using an automated process, from the components. I do this in order to make sure that nothing has broken the build, that what’s in source control represents the true state of the database, and to do integration testing. Sure, I develop on a full system with SSMS, rather than go anywhere near the ‘disconnected model’ of SQL Server Data Tools (SSDT), so this regular build isn’t a vital process because the use of the shared development server will avoid many integration problems, but I might want to build from a number of versions. This needs the ‘test’ data. When I say that source control contains everything I need, I generally store the test data separately because it’s big, it is binary, and it changes less frequently than the database versions. When this happens, I archive off the data and replace it (I’ll describe this in another article). This is no big deal compared with the main task of a refactoring, which is having to change the integration tests. I like to have at least one current set of the data of all the tables saved as BCP Native format files on disk, in a directory for each server, with a subdirectory for each database. As well as building the integration databases, it has a range of other uses in the long road through the database deployment process.
For a wide-scale test, you would build your database on a virtual server that you can then spin up to run each of your tests on. This means that, once you have all your integration databases built from the current version in source control, you will have no further need for messy data imports. You just run your tests on the virtual server. You run your tests against the test environment to do a full integration
For much testing, a virtual environment is possibly overkill. Normally, you would want to run your integration tests overnight as a daily process. The tests can each build the database as part of the build-up process. AdventureWorks, for example takes less than a minute to build entirely from scripts to a known data state. All third-party interfaces can be ‘mocked’. The databases can be torn down very quickly.
To create, copy, modify and otherwise manipulate a database, there are several activities that need to be automated. We’ll here deal with one of these: getting data in. I’ll be talking about other ‘bits’ in other articles.
I’ll be providing sample scripts. They are intended to illustrate and they work, but they aren’t industrial strength. For effective automation, we’ll tend to use PowerShell with SQL, but I’ll provide alternatives where possible if you are restricted to SQL. If you want a good pile of data to use, then go to the companion article 'Database Deployment: The Bits - Copying Data Out' to find out how. I use a build script for AdventureWorks and a directory with all the data in order to try it out.
Deleting the existing data
If you are running a series of tests, and are not using virtualization, you will want to get the database to a known state of data consistent with the tests. You will build the database just the once and then import the data for each test rather than adding it. This means that, unless you do this as part of the teardown process of the previous test, you will want to delete the existing data. Deleting all data from databases should be easy, but referential integrity constraints will stand in your way to prevent you iterating through a list of tables, deleting all the data from each one. To delete all the existing data in a database, you need to temporarily disable referential integrity constraints and any triggers that are there to prevent you doing precisely this. Then we execute the following code. Before you even attempt to do this, make sure your data is all successfully read out and you have a backup. Otherwise this will end in tears. Make sure you know what you’re doing and you’re in the right database and server before you run this.
USE MyDatabase
EXECUTE sp_msforeachtable 'ALTER TABLE ? WITH CHECK NOCHECK CONSTRAINT ALL'
--now create a batch that deletes all the tables
EXECUTE sp_msforeachtable 'ALTER TABLE ? DISABLE TRIGGER all'
DECLARE @Command NVARCHAR(MAX)
SELECT @Command=
(select 'Delete from ' + QUOTENAME(Table_Catalog) + '.'
+QUOTENAME(Table_Schema)+'.' + QUOTENAME(Table_Name) + '
'
FROM information_schema.Tables WHERE table_Type='BASE TABLE'
FOR XML PATH(''), TYPE).value('.', 'nvarchar(max)')
EXECUTE (@Command)
EXECUTE sp_msforeachtable 'ALTER TABLE ? ENABLE TRIGGER all'
EXECUTE sp_msforeachtable 'ALTER TABLE ? WITH CHECK CHECK CONSTRAINT ALL'
So what are we doing here? We are first disabling all the triggers and constraints in the database, then we are deleting all the tables, and finally we are re-enabling both triggers and constraints. You can’t use TRUNCATE this way to speed things up because you’d need to actually drop the constraints first. See TRUNCATE TABLE (Transact-SQL). There are other ways of doing this which are more complicated but which don’t involve disabling constraints, which is a rather blunt knife in the database surgeon’s set of instruments. I will show later on in this article how you can usually delete data without touching constraints.
Importing the data.
You have a wide choice of techniques for getting the data in, but if you have taken the wise choice of storing the data in native format, then BCP, or one of the other techniques that use the bulk copy library, is best. BCP is good for a number of formats, but native format is best, and is fastest.
It is possible to do bulk import in SQL Server by a variety of methods that use the same underlying Bulk copy library. There is BCP, BULK INSERT and INSERT….Select * from OPENROWSET(BULK…). The .NET System.Data. SqlClient also provides a SQLBulkCopy class to do it. It is also reasonably easy to make a PowerShell script that uses this library, or you can merely execute the BCP utility to load the data into the remote server.
Tweaking the performance of the import
These approaches are all fast. The BCP command-line is a good alternative but is out-of-process. This is a bit more insecure, but may give you better performance if you are short of CPU grunt.
When you’re using TSQL, the BULK INSERT statement is the obvious way to use Bulk Copy functionality. There are a number of knobs you can twiddle to improve Bulk Import performance
For performance reasons, the best place to have your data is on a local drive within the integration database server, though it is perfectly possible to have the BCP process on a different server to the database, or the data file, if you don’t mind waiting. You can use BCP across a network to a remote SQL server, with the files being either local with a pathname, or remote with a UNC name. However, don’t do it across a network unless you have to . It will usually be faster if you first copy the files to reside on the same server as the BCP application and the destination server (the integration server in our case). Ideally the source data should be on a different physical drive to the destination database
Both The BCP command and the BULK INSERT statement disable triggers by default. The INSERT ... SELECT * FROM OPENROWSET(BULK...) statement will, by default, execute triggers an this can cause problems.
As well as disabling constraints or triggers, and killing indexes, you can get an edge in the import process if you use ‘Native format’ and you can also speed the process by ensuring that you use minimal logging. If your database is using the simple recovery model, then you’re there already, otherwise you’ll need to switch the database to the bulk-logged recovery model just for the import session, remembering to switch the recovery model back to the full recovery model after you’ve finished: (see this too). You can import into a table from more than one client process in parallel. You can use batches , disable triggers or order the data in the file in the same order as that which is imposed by the table’s clustered index. You can control the locking behaviour
The problem of constraints
One thing that you’ll may discover when you try to insert bulk data into a table that has foreign key constraints is that you can get errors if the relevant rows in the other table aren’t there.
BULK INSERT [MyDatabase].[MySchema].[MyTable] from MyDirectory\MySchema_MyTable.bcp'
WITH (KEEPIDENTITY, DATAFILETYPE = 'native', CHECK_CONSTRAINTS)
/*
Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY constraint "FK_MyTable_MyColumn_MyColumnID". The conflict occurred in database "MyDatabase", table "MySchema.MyOtherTable", column 'MyColumnID'.
The statement has been terminated.
*/
You’ll have noticed that I specified ‘CHECK_CONSTRAINTS’: That means both referential and check constraints. That is a great way of ensuring that bad data never reaches the database.
Importing by disabling constraints
By default, both the BCP command and the BULK INSERT statement temporararily disables constraints, whereas INSERT ... SELECT * FROM OPENROWSET(BULK...) doesn’t. If you opt to let the bulk copy process disable check constraints, as happens if you do BCP/BULK INSERT in their default setting, then it will enable the constraints so that they work for subsequent insertions or updates, but won’t check existing rows that have been imported. You’ll be left to check the data and set the constraints to being trusted afterwards (see Controlling Constraint Checking by Bulk Import Operations). If you neglect to enable constraints with a retrospective check, then you will get subsequent performance loss in queries since these constraints can’t be used in query plans until they are set to ‘trusted’. In this case, if you populate a table without a check, by temporary disabling the constraint, then it is set to being ‘untrusted’ until some process checks those constraints, including both referential and check constaints.
After you’ve done an import, you can check to make sure everything is trusted by running this query.
SELECT sys.objects.name AS [Table Name],
sys.check_constraints.name AS [Constraint],
is_not_trusted,
is_disabled
FROM sys.objects
INNER JOIN sys.check_constraints
ON sys.check_constraints.parent_object_ID = sys.objects.object_ID
WHERE sys.check_constraints.is_not_trusted = 1
OR sys.check_constraints.is_disabled = 1
ORDER BY sys.objects.name, sys.check_constraints.name
…or on old versions of SQL Server…
SELECT name,
OBJECTPROPERTY(id,'CnstIsNotTrusted') as is_not_trusted
FROM sysobjects
WHERE COALESCE(OBJECTPROPERTY(id,'CnstIsNotTrusted'),0)<>0
Please see sys.check_constraints (Transact-SQL)) for more details.
Before setting the constraints to being trusted, you might want to make sure you’re not going to hit an error. You can check that there are no constraint violations before you set them to being trusted by executing DBCC CHECKCONSTRAINTS
You can check all your tables in one go by executing this
EXECUTE sp_msforeachtable 'DBCC CHECKCONSTRAINTS("?")'
you can ensure that a single contraint is checked and, if successful, trusted by doing this…
ALTER TABLE [MyDatabaseCopy].[MySchema].[MyTable]
WITH CHECK CHECK CONSTRAINT
FK_MyTable_Contact_ContactID
To do all the constraints for the table, you do this
ALTER TABLE [MyDatabaseCopy].[MySchema].[MyTable]
WITH CHECK CHECK CONSTRAINT ALL
To switch them all back on, for every table in the database run:
-- enable all constraints
EXECUTE sp_msforeachtable ‘ALTER TABLE ? WITH CHECK CHECK CONSTRAINT ALL’
So lets put this together with an import routine
USE MyDatabase
--the path to your root directory where you store the files
DECLARE @PathToBCPFileDirectory VARCHAR(100)
SELECT @PathToBCPFileDirectory= 'MyRootDirectory\'
--the filetype you use (there is no standard so I don't bother)
DECLARE @Filetype VARCHAR(10)
SELECT @FileType= ''
--Your database (leave as a null to get this automatically set to the database name)
DECLARE @DatabaseSourceDirectory VARCHAR(100)
SELECT @DatabaseSourceDirectory= 'MyDatabase'
--set this to null if you use the current database name
DECLARE @Directory VARCHAR(255)
SELECT @Directory=@PathToBCPFileDirectory--construct a valid path
+REPLACE(REPLACE(@@ServerName,'\','-'),'/','-')
+'\'+REPLACE(REPLACE(COALESCE(@DatabaseSourceDirectory,DB_NAME()),'\','-'),'/','-')+'\'
DECLARE @ImportCommand NVARCHAR(MAX)
SELECT @ImportCommand=
(select 'BULK INSERT ' + QUOTENAME(db_name()) + '.'
+QUOTENAME(TABLE_SCHEMA)+'.' + QUOTENAME(TABLE_NAME) + ' from ''' +@Directory
+REPLACE(REPLACE(TABLE_SCHEMA+'_'+ TABLE_NAME,'.','-'),'\',':') + @FileType + '''
WITH (KEEPIDENTITY, DATAFILETYPE = ''native'')
' FROM information_schema.Tables WHERE table_Type='BASE TABLE'
FOR XML PATH(''), TYPE).value('.', 'nvarchar(max)')
EXECUTE (@ImportCommand)
EXECUTE sp_msforeachtable 'ALTER TABLE ? WITH CHECK CHECK CONSTRAINT ALL'
This runs in 40 seconds for AdventureWorks on most of my database servers.
If you want to run this in PowerShell, using BCP, something like this will do the trick. (your windows account must have the required permission on all the tables to use this)
you'd need to fill these in with the details
this routine assumes that the BCP files already exist
$PathToBin='' #put this in only if you hit trouble locating BCP.
often 'C:\Program Files\Microsoft SQL Server\100\Tools\Binn\'
$directory='MyRootDirectory' # the directory where you want to store them
$SourceServer = ("MyServerInstance") # used to find the subdirectory where the files are
$SourceDatabase='MyDatabase' #where we take the data and build script from
$DestinationServer = ("MyServerInstance") #the destination instance
$DestinationDatabase='MyDatabase' #the destination database
#Load SMO assemblies
$MS='Microsoft.SQLServer'
#now load in the SMO DLLs
@('.SMO','.SmoExtended') |
foreach-object {
if ([System.Reflection.Assembly]::LoadWithPartialName("MS_") -eq $null)
{"missing SMO component MS_"}
}
set-psdebug -strict
$ErrorActionPreference = "stop" #
now log into the server and get the server object
$My="$MS.Management.Smo" #
$s = new-object ("$My.Server") $DestinationServer
if ($s.Version -eq $null){Throw "Can't find the instance $DestinationServer"}
$SQL=@'
SET NOCOUNT ON;
select '"' +TABLE_CATALOG + '"."'+Table_Schema+'"."' + Table_Name+'"' QualifiedTableName,
Table_Schema+'_' + Table_Name FileTableName
FROM information_schema.Tables WHERE table_Type='BASE TABLE'
'@
#now get the destination database object
$Destination = New-Object ("$My.Database") ($s, "$DestinationDatabase")
if ($Destination.name -ne $DestinationDatabase) #on failure
{Throw "Can't find the database '$DestinationDatabase' in $DestinationServer"};
#now get the message handler to get SQL messages
$handler = [System.Data.SqlClient.SqlInfoMessageEventHandler] {param($sender, $event) Write-Host $event.Message};
#and assign it to the message pipeline. We just choose to show it in the output
$s.ConnectionContext.add_InfoMessage($handler);
#execute the SQL to get the tables into a dataset
$result=$Destination.ExecuteWithResults("$SQL") #execute the SQL
#now, for each table in the pipeline
$result.Tables[0] |
foreach {
$filename = "$($_.FileTableName)" -replace '[\\\/\:\.]','-' #work out the name of the filename
#and now we get the whole path to the file we want to import
$TableSource = "$directory\$($SourceServer -replace '[\\\/\:\.]','-')\$($SourceDatabase -replace '[\\\/\:\.]','-')"
#and we execute the BCP command
$WhatHappened=&"$($pathToBin)BCP.exe" "$($_.QualifiedTableName)" in "$TableSource\$filename" -q -n -T -E "-S$($DestinationServer)"
if ($WhatHappened -like '*Error *') {throw ($WhatHappened)}
}
#all is now in place. We just have to set the contraints to trusted
$Destination.ExecuteNonQuery(@"
EXECUTE sp_msforeachtable 'ALTER TABLE ? WITH CHECK CHECK CONSTRAINT ALL'
"@) #flag constraints as trusted
$s.ConnectionContext.remove_InfoMessage($handler);
This seems good and simple, doesn’t it? This is why BCP and BULK INSERT default to doing it this way. Why not just always opt to ignore constraints? The answer is that, in general, It isn’t a good idea to modify the metadata unless it is necessary. When constraints are disabled, a schema modify lock might be taken to update the metadata. This can interfere with other commands such as an online index build or affect transactions. In an active OLTP system you will need to avoid doing this, but for our operation, this is safe.
There are alternatives, of course.
Kill ‘n Fill
Some articles advise ‘Kill and fill’, a technique whereby all indexes and constraints are deleted before the BCP operation and then reinstated. This makes the whole operation a lot easier and faster, but even if we aren’t going to suffer a schema modify lock, I dislike the idea because it is altering the metadata, which isn’t good practice for a test that is reliant on the metadata being at a known state. You don’t avoid the errors on replacing the DRI if there is an error when you try to reinstate the indexes and constraints.
What could possibly go wrong that would cause a constraint violation? There is always the risk that data is accidentally inserted twice into a table, or incorrect data can get in. If you originally exported the data from a database that had active connections modifying the data, then you can get referential integrity errors.
Filling Tables in the right order
Copying tables in the right order is the most trouble-free approach since you import the tables in such an order that any conflicts with a foreign key constraint are avoided without disabling them. You just do a topological sort on the tables. This code will need the temporary stored procedure that I provide in the subsequent listing.
DECLARE @Filetype VARCHAR(10)
DECLARE @DatabaseSourceDirectory VARCHAR(100)
DECLARE @Directory VARCHAR(255)
DECLARE @PathToBCPFileDirectory VARCHAR(100)
DECLARE @Command NVARCHAR(MAX)
SELECT @FileType= ''--the filetype you use e.g. .DAT (there is no standard so I don't bother)
SELECT @PathToBCPFileDirectory= 'MyRootDirectory\'
SELECT @DatabaseSourceDirectory= 'MyDatabase'
--set this to null if you use the current database name
DECLARE @tables TABLE (TheObject_ID INT NOT NULL,
TheName SYSNAME NOT NULL,
TheSchema SYSNAME NOT NULL,
HasIdentityColumn INT NOT NULL,
TheOrder INT NOT NULL)
INSERT INTO @tables
EXECUTE #AllTablesInDependencyOrder
SELECT @Directory=@PathToBCPFileDirectory--construct a valid path
+REPLACE(REPLACE(@@ServerName,'\','-'),'/','-')
+'\'+REPLACE(REPLACE(COALESCE(@DatabaseSourceDirectory,DB_NAME()),'\','-'),'/','-')+'\'
SELECT @Command=
(select 'BULK INSERT ' + QUOTENAME(db_name()) + '.'
+QUOTENAME(TheSchema)+'.' + QUOTENAME(TheName) + ' from ''' +@Directory
+REPLACE(REPLACE(TheSchema+'_'+ TheName,'.','-'),'\',':') + @FileType+ '''
WITH ('+ CASE WHEN HasIdentityColumn<>0 THEN 'KEEPIDENTITY, '
ELSE '' END
+'DATAFILETYPE = ''native'', CHECK_CONSTRAINTS)
'
FROM @tables ORDER BY theOrder
FOR XML PATH(''), TYPE).value('.', 'nvarchar(max)')
if @@error=0 EXECUTE sp_ExecuteSQL @Command
So how do we do a topological sort? Well, all we need to do is to get a list of tables in order of their dependencies. High at the top of the list are tables that have no foreign key relationships, followed by those that are only referenced by other tables but do not themselves refer to any tables. These are then followed by tables that only refer to tables higher in the list. Easy really if one does it with little bits of paper before trying any coding.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF OBJECT_ID (N'TempDB..#AllTablesInDependencyOrder') IS NOT NULL
DROP PROCEDURE #AllTablesInDependencyOrder
GO
Create PROCEDURE #AllTablesInDependencyOrder
/**
summary: @'
This routine returns a table containing all the tables in the current
database, their schema, object_ID, whether that have an identity
column in them, and their dependency level. You would use this for
deleting the data from tables or BCPing in the data.
'@
Author: Phil Factor
Revision: 1.1 dealt properly with heaps
Created: 25th November 2011
example:
~ @'
Declare @tables Table(TheObject_ID INT NOT null,
TheName SYSNAME NOT null,TheSchema SYSNAME NOT null,
HasIdentityColumn INT NOT null,TheOrder INT NOT null)
insert into @tables
Execute #AllTablesInDependencyOrder
Select * from @Tables
'@
returns: @'
TheObject_ID INT,--the tables' object ID
TheName SYSNAME, --the name of the table
TheSchema SYSNAME, --the schema where it lives
HasIdentityColumn INT, --1 if it has identity column
TheOrder INT) --Order by this column
'@ **/
AS
SET NOCOUNT ON;
DECLARE @Rowcount INT, @ii INT
CREATE TABLE #tables (
TheObject_ID INT,--the tables' object ID
TheName SYSNAME, --the name of the table
TheSchema SYSNAME, --the schema where it lives
HasIdentityColumn INT, --whether it has an identity column
TheOrder INT DEFAULT 0) --we update this later to impose an order
--let's do a Topological sort
--firstly we read in all the tables from the database.
INSERT INTO #tables (Theobject_ID, TheName, TheSchema, HasIdentityColumn)
SELECT TheTable.OBJECT_ID, TheTable.NAME, TheSchema.NAME,
CASE WHEN identityColumns.Object_id IS NULL THEN 0
ELSE 1
END
FROM sys.tables TheTable
INNER JOIN sys.schemas TheSchema
ON TheSchema.SCHEMA_ID = TheTable.schema_ID
LEFT JOIN (SELECT DISTINCT Object_id
FROM sys.columns
WHERE is_identity = 1) identityColumns
ON Thetable.object_id = identityColumns.object_id
/* We'll use a SQL 'set-based' form of the topological sort
First, find a list of "start nodes" which have no incoming edges
and insert them into a set S; at least one such node must exist
in an acyclic graph*/
--flag all the immediately safe tables to insert data in
UPDATE #tables SET TheOrder = 1
FROM #tables parent --do not reference any other table
LEFT OUTER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
WHERE parent_object_ID IS NULL
--add self-referencing tables without external references
UPDATE #tables SET TheOrder = 2
FROM #tables parent
LEFT OUTER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
AND sys.foreign_Keys.referenced_Object_ID <> parent.Theobject_ID
WHERE parent_object_ID IS NULL
AND TheOrder = 0--i.e. it hasn't been ordered yet
SElECT @Rowcount=100,@ii=2
--and then do tables successively as they become 'safe'
WHILE @Rowcount > 0
BEGIN
UPDATE #tables
SET TheOrder = @ii
WHERE #tables.TheObject_ID IN (
SELECT parent.TheObject_ID
FROM #tables parent
INNER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
INNER JOIN #tables referenced
ON sys.foreign_Keys.referenced_Object_ID = referenced.Theobject_ID
AND sys.foreign_Keys.referenced_Object_ID <> parent.Theobject_ID
WHERE parent.TheOrder = 0--i.e. it hasn't been ordered yet
GROUP BY parent.TheObject_ID
HAVING SUM(CASE WHEN referenced.TheOrder = 0 THEN -20000
ELSE referenced.TheOrder
END) > 0--where all its referenced tables have been ordered
)
SET @Rowcount = @@Rowcount
SET @ii = @ii + 1
IF @ii > 100
BREAK
END
SELECT TheObject_ID,TheName,TheSchema,HasIdentityColumn,TheOrder
FROM #tables order by TheOrder
IF @ii > 100 --not a directed acyclic graph (DAG).
RAISERROR ('Cannot load in tables with mutual references in foreign keys',16,1)
IF EXISTS (SELECT * FROM #tables WHERE TheOrder = 0)
RAISERROR ('could not do the topological sort',16,1)
GO
Here, we use the topological sort from within PowerShell to import the database’s data without having to upset any constraints. All these variants run at around the same speed.
you'd need to fill these in with the details
this routine assumes that the BCP files already exist
$PathToBin='' #put this in only if you hit trouble locating BCP.
often 'C:\Program Files\Microsoft SQL Server\100\Tools\Binn\'
$directory='MyRootDirectory' # the directory where you want to store them
$SourceServer = ("MyServerInstance") # used to find the subdirectory where the files are
$SourceDatabase='MyDatabase' #where we take the data and build script from
$DestinationServer = ("MyServerInstance") #the destination instance
$DestinationDatabase='MyDatabase' #the destination database
#Load SMO assemblies
$MS='Microsoft.SQLServer'
#now load in the SMO DLLs
@('.SMO','.SmoExtended') |
foreach-object {
if ([System.Reflection.Assembly]::LoadWithPartialName("MS_") -eq $null)
{"missing SMO component MS_"}
}
set-psdebug -strict
$ErrorActionPreference = "stop" #
now log into the server and get the server object
$My="$MS.Management.Smo" #
$s = new-object ("$My.Server") $DestinationServer
if ($s.Version -eq $null){Throw "Can't find the instance $DestinationServer"}
$SQL=@'
SET NOCOUNT ON;
DECLARE @Rowcount INT, @ii INT
CREATE TABLE #tables (
TheObject_ID INT,--the tables' object ID
TheName SYSNAME, --the name of the table
TheSchema SYSNAME, --the schema where it lives
HasIdentityColumn INT, --whether it has an identity column
TheOrder INT DEFAULT 0) --we update this later to impose an order
--let's do a Topological sort
--firstly we read in all the tables from the database.
INSERT INTO #tables (Theobject_ID, TheName, TheSchema, HasIdentityColumn)
SELECT TheTable.OBJECT_ID, TheTable.NAME, TheSchema.NAME,
CASE WHEN identityColumns.Object_id IS NULL THEN 0
ELSE 1
END
FROM sys.tables TheTable
INNER JOIN sys.schemas TheSchema
ON TheSchema.SCHEMA_ID = TheTable.schema_ID
LEFT JOIN (SELECT DISTINCT Object_id
FROM sys.columns
WHERE is_identity = 1) identityColumns
ON Thetable.object_id = identityColumns.object_id
/* We'll use a SQL 'set-based' form of the topological sort
First, find a list of "start nodes" which have no incoming edges
and insert them into a set S; at least one such node must exist
in an acyclic graph*/
--flag all the immediately safe tables to insert data in
UPDATE #tables SET TheOrder = 1
FROM #tables parent --do not reference any other table
LEFT OUTER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
WHERE parent_object_ID IS NULL
--add self-referencing tables without external references
UPDATE #tables SET TheOrder = 2
FROM #tables parent
LEFT OUTER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
AND sys.foreign_Keys.referenced_Object_ID <> parent.Theobject_ID
WHERE parent_object_ID IS NULL
AND TheOrder = 0--i.e. it hasn't been ordered yet
SElECT @Rowcount=100,@ii=2
--and then do tables successively as they become 'safe'
WHILE @Rowcount > 0
BEGIN
UPDATE #tables
SET TheOrder = @ii
WHERE #tables.TheObject_ID IN (
SELECT parent.TheObject_ID
FROM #tables parent
INNER JOIN sys.foreign_Keys
ON sys.foreign_Keys.parent_Object_ID = parent.Theobject_ID
INNER JOIN #tables referenced
ON sys.foreign_Keys.referenced_Object_ID = referenced.Theobject_ID
AND sys.foreign_Keys.referenced_Object_ID <> parent.Theobject_ID
WHERE parent.TheOrder = 0--i.e. it hasn't been ordered yet
GROUP BY parent.TheObject_ID
HAVING SUM(CASE WHEN referenced.TheOrder = 0 THEN -20000
ELSE referenced.TheOrder
END) > 0--where all its referenced tables have been ordered
)
SET @Rowcount = @@Rowcount
SET @ii = @ii + 1
IF @ii > 100
BREAK
END
SELECT TheObject_ID,TheName,TheSchema,HasIdentityColumn,TheOrder
FROM #tables order by TheOrder
IF @ii > 100 --not a directed acyclic graph (DAG).
RAISERROR ('Cannot load in tables with mutual references in foreign keys',16,1)
IF EXISTS (SELECT * FROM #tables WHERE TheOrder = 0)
RAISERROR ('could not do the topological sort',16,1)
'@
$Destination = New-Object ("$My.Database") ($s, "$DestinationDatabase")
if ($Destination.name -ne $DestinationDatabase){Throw "Can't find the database '$DestinationDatabase' in $DestinationServer"};
$handler = [System.Data.SqlClient.SqlInfoMessageEventHandler] {param($sender, $event) Write-Host $event.Message};
$s.ConnectionContext.add_InfoMessage($handler);
$result=$Destination.ExecuteWithResults("$SQL") #execute the SQL
$s.ConnectionContext.remove_InfoMessage($handler);
$result.Tables[0] |
foreach {
$filename = "$($_.TheSchema)_$($_.TheName)" -replace '[\\\/\:\.]','-'
$TableSource = "$directory\$($SourceServer -replace '[\\\/\:\.]','-')\$($SourceDatabase -replace '[\\\/\:\.]','-')"
$WhatHappened = &"$($pathToBin)BCP.exe" "`"$DestinationDatabase`".`"$($_.TheSchema)`".`"$($_.TheName)`"" in "$TableSource\$filename" -q -h "CHECK_CONSTRAINTS" -n -T -E "-S$($DestinationServer)"
if ($WhatHappened -like '*Error*') {throw ($whatHappened)}
}
Now we have a topological sort, we can also use it to perform surgery on a database. I started this article by showing you how to clear out all the data in a database in order to re-fill it with a different set of data. We just build a batch of deletes in the right order and execute it. (Don’t try this unless you have a good backup and you've double-checked that you are in the right database!)
Declare @tables Table(TheObject_ID INT NOT null,
TheName SYSNAME NOT null,TheSchema SYSNAME NOT null,
HasIdentityColumn INT NOT null,TheOrder INT NOT null)
insert into @tables
EXECUTE #AllTablesInDependencyOrder
DECLARE @Command NVARCHAR(MAX)
SELECT @Command=
(select 'Delete from ' + QUOTENAME(db_name()) + '.'
+QUOTENAME(TheSchema)+'.' + QUOTENAME(TheName) + '
'
FROM @tables ORDER BY theOrder desc
FOR XML PATH(''), TYPE).value('.', 'nvarchar(max)')
EXECUTE sp_msforeachtable 'ALTER TABLE ? DISABLE TRIGGER all'
EXECUTE sp_ExecuteSQL @Command
EXECUTE sp_msforeachtable 'ALTER TABLE ? ENABLE TRIGGER all'
What this is doing is to start with all those tables that aren’t referenced by any other table other than themselves, and then chipping away at the others, picking those that are only referenced by tables that have had all their data deleted. On my test server, MyDatabase data is all deleted within 25 seconds. On some databases, this won’t work because of horrible circular references, or mutual references. In these cases, you can use the blunter instrument of disabling constraints.
Wrapup.
From my experience, the four different methods of reading data into a database take roughly the same amount of time. The bulk load process is so efficient when you give it a chance that the process is governed more by the speed of accessing the data from file, and the network speed. I prefer a topological sort even if the code looks a bit intimidating, since it is less intrusive and no checks are ever disabled. However, I can appreciate that the simpler system makes a lot of sense if the user is aware of the need to mop up afterwards.
When I started writing this article, I felt it would be easy since we all know how to import data into a database. As I was intending on also writing about getting data out, scripting out the metadata and copying databases, I decided to do the entire process of copying a database, with extracts from my own scripts, using a range of databases and testing before-and-after with data and schema comparison tools. I also tried to double-check everything I wrote, even when I was sure of my facts. The exercise convinced me that I had started out knowing far less than I should have done about the process. I hope that the lessons I learned will be of benefit to others!
Further Reading
© Simple-Talk.com
Red Gate Software BI Tools Team
SSAS Compare version 1.0 released
Published 21 November 2012 12:01 pm
We're pleased to announce that SSAS Compare version 1.0 has been released as a free tool. Version 1.0 includes:
Comparisons of live databases and XMLA or Analysis Services Project files
We've tested it on as many cube configurations as we could find (not just good old AdventureWorks!), but we can't provide support for free tools — so if you're reliant on SSAS Compare for your cube deployment, use it at your own risk. See the user license agreement in the installer for more details.
SSAS Compare's come a long way from its humble beginnings as an internal tool first developed for Red Gate's own BI developers. Today's SSAS Compare is now much more stable — not to mention much easier to use — and something the team is proud to have released with Red Gate's name on.
Next: Deployment Manager
We're working on integrating SSAS Compare cube deployment with our new Deployment Manager tool, so you'll be able to create cube deployment scripts and automate the deployment process, too. We're documenting the process in a white paper we'll publish online in the next week.
Thank you!
Thanks to all the SSAS Compare users out there. Without your feedback, we could never have produced such a stable product so quickly. We hope you continue to find useful.
See you in Deployment Manager!
Leave a Reply
You must be logged in to post a comment.
Report Building 3.0: Adding Maps to Your Reports
13 November 2012
by Robert Sheldon
With Report Builder and SSMS, there isn't much you can't do in the way of the common reports and visualisations. One of the more interesting visualisations uses maps, and that, combined with layers, makes for an impressive way of representing data.
In the first three articles of the Report Builder 3.0 series (article 1 | article 2 | article 3), you learned how to add tables and charts to a report and configure their properties. In this article, you’ll learn how to add a map, one of the most interesting visualizations available in Report Builder.
A map is made up of one or more layers that display spatial and analytical data. The spatial data is what you’d normally think of as the map itself, such as a country’s outline or the outline of the states or provinces within that country. The analytical data provides meaning to the spatial data. For example, you might have a map whose spatial data provides an outline of Canada and its provinces and whose analytical data breaks down the population demographics for each province.
In this article, we’ll create a map of the United States that includes the locations and sales totals for sales representatives in the AdventureWorks bicycle company (Microsoft’s fictitious company used to provide sample SQL Server data). If you want to create this map on your own system, you’ll need to create a Report Builder report and add a data source and dataset to the report that retrieve AdventureWorks data.
On my system, I created a data source that connects to the AdventureWorks2012 database on a local instance of SQL Server 2012. I named the data source AdventureWorks. I then created a dataset that uses the AdventureWorks data source to retrieve the necessary sales data. I named the dataset SalesData. Finally, I configured the dataset with the following T-SQL query:
SELECT
p.FirstName,
p.LastName,
p.City,
RTRIM(sp.StateProvinceCode) AS StateCode,
p.SalesLastYear,
a.SpatialLocation
FROM
Sales.vSalesPerson p
INNER JOIN Person.BusinessEntityAddress ea
ON p.BusinessEntityID = ea.BusinessEntityID
INNER JOIN Person.Address a
ON ea.AddressID = a.AddressID
INNER JOIN Person.StateProvince sp
ON a.StateProvinceID = sp.StateProvinceID
WHERE
CountryRegionName = 'United States'
AND SalesLastYear > 0;
The SELECT statement retrieves sales and location data for each sales representative. Notice that I use the RTRIM function to remove trailing spaces from the state codes. We’ll be using the state codes to map our analytical data to spatial data, which has its own state codes associated with it. The codes must match exactly. How we use the data will become clearer as we work though the exercise.
After you’ve set up your environment, you’re ready to add the map. As mentioned above, a map is made up of one or more layers. Each layer is configured as one of the following types:
Together, the three layers that we’ll be adding to our map—polygon, point, and tile—will provide a single view of the spatial and analytical data. We’ll add and configure the layers one at a time, in the order specified above.
To demonstrate how to create the map, we’ll use a combination of wizards and other interface elements when adding the layers. I take this approach because Report Builder can be a bit quirky when working with maps, and some features seem to be more efficient than others. At the same time, I want to demonstrate how to work with each layer individually and how they fit together. That’s not to say you can’t do things differently, but if you follow along with what I’ve done, you should come out with a better conceptual understanding of how Report Builder works when it comes to maps. From there, you can fiddle around all you like to better familiarize yourself with how to use the various features.
Adding a Polygon Layer
There are a couple ways you can get started with adding a map to your report. You can go the wizard route, which adds the map surface and your first layer, or you can go the manual route, in which you first add the map surface and then add your first layer. We’ll go the latter so you can better see how each layer is incorporated into your map.
The first step, then, is to go to the Insert ribbon, click the Map button, and then click InsertMap. Next, go to your design surface and drag your cursor from the top-left corner to the bottom-right of where you want to position your map, as you’ve done when adding a table or chart. When you release your mouse, your design surface should look similar to the one shown in Figure 1 (click to enlarge). You might need to resize or move items around, but basically you want a map surface that will display the continental U.S. in the correct proportions.
Figure 1: Adding a map to your report
When you click the map surface, the MapLayers windows appears to the right of the map, as shown in Figure 1. The MapLayers window displays each layer that you add to your map and let’s you access configurable properties associated with each layer.
To add a polygon layer, click the Newlayerwizard button at the top of the MapLayers window. This launches the NewMapLayer wizard. On the first page of the wizard (Chooseasourceofspecialdata), you select the source type and a map gallery, as shown in Figure 2 (click to enlarge).
Figure 2: Adding a new layer to your map
Report Builder lets you choose one of the following three source types when defining a map layer:
For our polygon layer, select (or retain) the default option, Mapgallery. Then, in the MapGallery pane, select USA by State. A map preview will be displayed on the right side of the page. Click Next.
For the rest of the wizard, stick with the default settings and click your way to the end. When you’re finished, you should end up with a polygon layer that looks similar to the one shown in Figure 3 (click to enlarge). Notice that the layer is also listed in the MapLayers window.
Figure 3: A polygon layer of the United States, including Alaska and Hawaii
Because we’re dealing only with the continental U.S. for our report, we can remove Alaska and Hawaii. To remove a state, right-click it and then click DeletePolygon. After you delete the states, Report Builder will automatically resize the remaining states to fit the map surface, as shown in Figure 4 (click to enlarge).
Figure 4: A polygon layer of the United States, excluding Alaska and Hawaii
Now we need to configure several of the polygon layer’s properties to display the analytical data. In the MapLayers window, click the down arrow next to the polygon layer, and then click LayerData. When the MapPolygonLayerProperties dialog box appears, go to the Analyticaldata page, where you map your spatial data to your analytical data, as shown in Figure 5.
Figure 5: Mapping analytical and special data
In the Analyticaldataset dropdown list, select the dataset you created for the report. (My dataset is named SalesData.) Then click the Add button to add a mapping. In the Fromspatialdataset drop-down list, select STUSPS. These are the state codes generated by the U.S. Postal Service, and they’re the codes associated with the spatial data. In the Fromanalyticaldataset drop-down list, select [StateCode], which is the field in the SalesData dataset that contains the state codes. That’s all there is to mapping the spatial and analytical data and associating the data in your dataset to the map layer. Click OK to close the MapPolygonLayerProperties dialog box.
Next, we want to specify that the states contain no fill color. The reason we do this is because we want only the states with sales representatives to have color. But we must first get rid of all color and then add in the specific state settings. So go to the MapLayers window, click the down-arrow next to the polygon layer, and then click PolygonProperties. When the MapPolygonProperties dialog box appears, go to the Fill page and, in the Color drop-down list, select NoColor, as shown in Figure 6. When you’re finished, click OK to close the dialog box.
Figure 6: Removing the fill color from your polygon layer
The final settings to modify in the polygon layer are the color rules. This is where we set the colors to appear in those states that contain a sales representative. So return to the MapLayers window, click the down-arrow next to the polygon layer, and then click PolygonColorRule. When the MapColorRulesProperties dialog box appears, click the option Visualizedatabyusingcolorranges, as shown in Figure 7.
Figure 7: Setting up color rules for your polygon layer
Next, in the Datafield drop-down list, select [Sum(SalesLastYear)]. This means that the total amount in the SalesLastYear column will be used to define a range of values and the colors associated with them. As a result, the states with sales representatives will be colored based on the amount of sales, relative to the total. (This will become clearer when you see it in action.)
After you’ve select a value from the Datafield drop-down list, select your range of colors. As you can see in Figure 7, I selected Khaki, Gold, and Tomato, mostly because I liked the names.
Next, go to the Legend page to modify how the data is displayed in the legend. By default, the data is displayed numerically, but we want to change it to currency. To do so, modify the expression in the Legendtext drop-down list by changing the N in {N0} to C for both instances. Your equation should now look like the one shown in Figure 8. When you’re finished, click OK to close the dialog box.
Figure 8: Configuring the legend for your polygon layer
You’re just about finished configuring the polygon layer. But first, change the map title and the legend title. To do so, double-click the title and make your change. When you’re finished, your polygon layer should look similar to the one shown in Figure 9 (click to enlarge).
Figure 9: Viewing your polygon layer in design mode
Notice that the legend uses the colors we selected and that the amounts are listed as currency. Also notice that all the states are colored to match the figures in the legend. Report Builder uses sample data when rendering a map in design mode. The actual coloring and legend figures will not be visible until you run the report. So the next step is to click the Run button. The report and its map are displayed in preview mode, similar to what’s shown in figure 10 (click to enlarge).
Figure 10: Viewing your polygon layer in preview mode
As you can see, only a few states now have color. If you were to view the data returned by our dataset’s query, you would see that these are the states in which sales representatives reside. Because we mapped our dataset to our spatial data, Report Builder is able to color only specific states. What we’ve done here represents our first step in displaying both spatial and analytical data. However, as good of a start as this is, clearly our map does not include enough information to make it particularly useful. For that, we need to add a point layer.
Adding a Point Layer
The point layer will add specific locations to our map, in this case, the cities in which our sales representatives reside. To add the layer, go to the MapLayers window and click the Newlayerwizard button. The following steps walk you through the process of creating your point layer:
When you’re finished, a new layer is added to your map. However, all you’ll see are several circles that mark the cities where your sales representatives reside.
As you can see, adding the point layer is simple enough, but now we need to configure several of the layer’s properties. In the MapLayers window, click the down-arrows next to the point layer, and then click PointProperties to launch the MapPointProperties dialog box, shown in Figure 11.
Figure 11: Configuring the point layer on your map
First, we need to define an expression for the Labeltext property, which determines what labels to assign to our points on our maps. The SpatialLocation field in our dataset determines where those points are located; however, we’ll use the City and StateCode values to specify how the labels will appear on the map. So click the expression button to the right of that property to launch the Expression dialog box, shown in Figure 12.
Figure 12: Defining an expression for the Label property
Our expression concatenates the city names and state codes, as you can see in Figure 12. I’ve also included the expression here for easy reading and copying:
=Fields!City.Value + ", " + Fields!StateCode.Value
Once you’ve added the expression, click OK to close the Expression dialog box. Next, we will define an expression on the Tooltip property. So click the expression button next to that property and enter the following expression in the Expression dialog box:
=Fields!FirstName.Value + " " + Fields!LastName.Value + " - " + FormatCurrency(Fields!SalesLastYear.Value)
In this expression, we’re concatenating the first and last names, along with the total sales for that individual. Notice that I’m using the FormatCurrency method to display the sales value as a currency. This full name and total sales will be displayed as a tooltip when a user hovers over a point.
Finally, we want to change the marker that designates each point on the map. By default, the marker is a circle, but we’re going to use a wedge (triangle) instead. In the Markertype drop-down list, select Wedge, and then, in the Markersize drop-down list, select 7pt. Your MapPointProperties dialog box should now look like what is shown in Figure 13. Click OK to close the dialog box.
Figure 13: Configuring the properties of your point layer
You’re then returned to the design surface, which should now reflect the updated point layer. In place of the circles you saw earlier, you should see small wedges, and beneath each of those wedges, the <<Expr>> placeholder, as shown in Figure 14. The placeholders mark where the names of the cities will appear.
Figure 14: Viewing your point and polygon layers in design mode
Now’s a good time to run your report again. When you view your map in preview mode, it should include labels for each city and wedges to mark those cities’ locations, as shown in Figure 15.
Figure 15: Viewing your point and polygon layers in preview mode
If you were to point to one of the cities, it would display the name and total sales for that particular sales rep. Now let’s see if we can make the map more interesting.
Adding a Tile Layer
Our final layer is a tile. To add the layer, go to the MapLayers window, click the AddLayer button, and then click TileLayer. This adds the new layer to your map surface. (You can tell that the layer has been added by the topography that now shows in Canada and Mexico.)
Next, in the MapLayers window, click the down-arrow next to the tile layer, and then click TileProperties. In the MapTileLayerProperties dialog box, select Aerial from the Type drop-down list, as shown in Figure 16. (The default type is Road, but in this case, Aerial works better.)
Figure 16: Changing the type of your tile layer
Click OK to close the dialog box. Your background should now look much richer and darker, similar to a Google Earth shot.
To adjust for the darker tile layer, we need to make a couple changes to the other layers. First, let’s change the font used to show locations in our point layer. In the MapLayers window, click the down-arrow next to the point layer and then click PointProperties. When the MapPointProperties dialog box appears, go to the Font page, shown in Figure 17.
Figure 17: Configuring the font used for your point layer
In the Style section, select the Bold checkbox, and in the Color drop-down list, select White. Then click OK to close the dialog box. The labels on your map should now be bold and in white.
Next, in the MapLayers window, click the down-arrow next to the polygon layer and then click LayerData. When the MapPolygonLayerProperties dialog box appears, go to the Visibility tab. In the Transparency(percent) drop-down list, change the percentage to 50, as shown in Figure 18. The transparency level will make the states with color look a bit better against the dark backdrop of the tile layer.
Figure 18: Changing the transparency of your polygon layer
Once you’ve configured the transparency, click OK to close the dialog box.
The last step you might want to take is to remove the parallels and meridians from your map. To do so, right-click the map surface and clear the checkmarks before the ShowParallels and ShowMeridians options. When you’re finished, your map surface should look similar to the one shown in Figure 19 (click to enlarge).
Figure 19: Viewing the tile, point, and polygon layers in design mode
That’s all you need to do to configure you map. Your three layers should be complete, at least for now. Run the map once again. When you view it in preview mode, it should now look like the map shown in Figure 20 (click to enlarge).
Figure 20: Viewing the tile, point, and polygon layers in preview mode
As you can see, all three layers are displayed as one. And with the addition of the tile layer, you map looks richer and more interesting. Notice that the labels are now white and printed in bold. And the states in which the sales representatives reside are more transparent so that some of the background comes through.
Of course, there is much more you can do with maps in Report Builder, but this introduction to the map features should provide you with a good idea of their potential. I encourage you to experiment with the various property settings and try out different ways to put together layers.
© Simple-Talk.com
Fatherjack
Jonathan has been working with SQL Server since 1999. He enjoys performance tuning, development and using SQL Server to provide appropriate business solutions. He is the founder and leader of the PASS SQL South West user group http://www.sqlsouthwest.co.uk , is a moderator at SQL Q + A forum ask.sqlservercentral.com and is on twitter at@fatherjack. He has spoken at SQLBits and SQL in the City as well as local user groups across the UK.
Coping with infrastructure upgrades
Published 19 November 2012 9:00 am
A common topic for questions on SQL Server forums is how to plan and implement upgrades to SQL Server. Moving from old to new hardware or moving from one version of SQL Server to another. There are other circumstances where upgrades of other systems affect SQL Server DBAs.
For example, where I work at the moment there is an Microsoft Exchange (email) server upgrade in progress. It it being handled by a different team so I’m not wholly sure on the details but we are in a situation where there are currently 2 Exchange email servers – the old one and the new one. Users mail boxes are being transferred in a planned process but as we approach the old server being turned off we have to also make sure that our SQL Servers get updated to use the new SMTP server for all of the SQL Agent notifications, SSIS packages etc.
My servers have a number of profiles so that various jobs can send emails on behalf of various departments and different systems. This means there are lots of places that the old server name needs to be replaced by the new one.
Anyone who has set up DBMail and enjoyed the click-tastic odyssey of screens to create Profiles and Accounts and so on and so forth ought to seek some professional help in my opinion. It’s a nightmare of back and forth settings changes and it stinks. I wasn’t looking forward to heading into this mess of a UI and changing the old Exchange server name for the new one on all my SQL Instances for all of the accounts I have set up.
So I did what any Englishmen with a shed would do, I decided to take it apart and see if I can fix it another way. I took a guess that we are going to be working in MSDB and Books OnLine was remarkably helpful and amongst a lot of information told me about a couple of procedures that can be used to interrogate DBMail settings.
USE [msdb] -- It's where all the good stuff is kept
GO
EXEC dbo.sysmail_help_profile_sp;
EXEC dbo.sysmail_help_account_sp;
Both of these procedures take optional parameters with the same name – ID and Name. If you provide an ID or a name then the results you get back are for that specific Profile or Account. Otherwise you get details of all Profiles and Accounts on the server you are connected to.
As you can see (click for a bigger image), the Account has the SMTP server information in the servername column. We want to change that value to NewSMTP.Contoso.com.
Now it appears that the procedure we are looking at gets it’s data from the sysmail_account and sysmail_server tables, you can get the results the stored procedure provides if you run the code below.
SELECT [account_id] ,
[name] ,
[description] ,
[email_address] ,
[display_name] ,
[replyto_address] ,
[last_mod_datetime] ,
[last_mod_user]
FROM dbo.sysmail_account AS sa;
SELECT [account_id] ,
[servertype] ,
[servername] ,
[port] ,
[username] ,
[credential_id] ,
[use_default_credentials] ,
[enable_ssl] ,
[flags] ,
[last_mod_datetime] ,
[last_mod_user] ,
[timeout]
FROM dbo.sysmail_server AS sms
Now, we have no real idea how these tables are linked and whether making an update direct to one or other of them is going to do what we want or whether it will entirely cripple our ability to send email from SQL Server so we wont touch those tables with any UPDATE TSQL. So, back to Books OnLine then and we find sysmail_update_account_sp. It’s exactly what we need. The examples in BOL take the form (as below) of having every parameter explicitly defined.
Not wanting to totally obliterate the existing values by not passing values in all of the parameters I set to writing some code to gather the existing data from the tables and re-write the SMTP server name and then execute the resulting TSQL.
IF OBJECT_ID('tempdb..#sysmailprofiles') IS NOT NULL
DROP TABLE #sysmailprofiles
GO
CREATE TABLE #sysmailprofiles
(
account_id INT ,
[name] VARCHAR(50) ,
[description] VARCHAR(500) ,
email_address VARCHAR(500) ,
display_name VARCHAR(500) ,
replyto_address VARCHAR(500) ,
servertype VARCHAR(10) ,
servername VARCHAR(100) ,
port INT ,
username VARCHAR(100) ,
use_default_credentials VARCHAR(1) ,
ENABLE_ssl VARCHAR(1)
)
INSERT [#sysmailprofiles]
([account_id] ,
[name] ,
[description] ,
[email_address] ,
[display_name] ,
[replyto_address] ,
[servertype] ,
[servername] ,
[port] ,
[username] ,
[use_default_credentials] ,
[ENABLE_ssl]
)
EXEC [dbo].[sysmail_help_account_sp]
DECLARE @TSQL NVARCHAR(1000)
SELECT TOP 1
@TSQL = 'EXEC [dbo].[sysmail_update_account_sp] @account_id = '
+ CAST([s].[account_id] AS VARCHAR(20)) + ', @account_name = '''
+ [s].[name] + '''' + ', @email_address = N''' + [s].[email_address]
+ '''' + ', @display_name = N''' + [s].[display_name] + ''''
+ ', @replyto_address = N''' + s.replyto_address + ''''
+ ', @description = N''' + [s].[description] + ''''
+ ', @mailserver_name = ''NEWSMTP.contoso.com'''
+ +', @mailserver_type = ' + [s].[servertype] + ', @port = '
+ CAST([s].[port] AS VARCHAR(20)) + ', @username = '
+ COALESCE([s].[username], '''''') + ', @use_default_credentials ='
+ CAST(s.[use_default_credentials] AS VARCHAR(1)) + ', @enable_ssl ='
+ [s].[ENABLE_ssl]
FROM [#sysmailprofiles] AS s
WHERE [s].[servername] = 'SMTP.Contoso.com'
SELECT @tsql
EXEC [sys].[sp_executesql] @tsql
This worked well for me and testing the email function EXEC dbo.sp_send_dbmail afterwards showed that the settings were indeed using our new Exchange server.
It was only later in writing this blog that I tried running the sysmail_update_account_sp procedure with only the SMTP server name parameter value specified. Despite what Books OnLine might intimate, you can do this and only the values for parameters specified get changed. If a parameter is not specified in the execution of the procedure then the values remain unchanged. This renders most of the above script unnecessary as I could have simply specified the account_id that I want to amend and the new value for the parameter I want to update.
EXEC sysmail_update_account_sp @account_id = 1, @mailserver_name = 'NEWSMTP.Contoso.com'
This wasn’t going to be the main reason for this post, it was meant to describe how to capture values from a stored procedure and use them in dynamic TSQL but instead we are here and (re)learning the fact that Books Online is a little flawed in places. It is a fantastic resource for anyone working with SQL Server but the reader must adopt an enquiring frame of mind and use a little curiosity to try simple variations on examples to fully understand the code you are working with. I think the author(s) of this part of Books OnLine missed an opportunity to include a third example that had fewer than all parameters specified to give a lead to this method existing.
Leave a Reply
You must be logged in to post a comment.
Handling Backups for Rapid Resilience
20 November 2012
by Feodor Georgiev
The backup and restore system in SQL Server hasn't changed a great deal over the years despite a huge growth in the typical size of databases. When disaster strikes, and an important service is taken offline while a restore is performed, there is often time to reflect on whether it might be possible to design databases for a more rapid recovery of the most critical parts of a database application.
In my previous article, Designing Databases for Rapid Resilience, I suggested some ways to improve your disaster recovery strategy by ensuring a robust design of your databases.
In this article I would like to take the topic a bit further, and set out some of the opportunities that already exist, and some potential opportunities, for maintaining a database service in the face of unforeseeable events.
Even if it is true that ‘any backup is better than no backup’, there is still a lot to think about when it comes to improving your backup and recovery strategy.
Types of database objects…
SQL Server Backup isn’t discriminating. It saves everything that is required for the restoration of a database, whatever its value. To SQL Server, the backups are nothing more than a collection of 8kb pages which are written one next to the other in a backup file upon request.
Much of what is backed up isn’t data. In fact, only a small minority may be data. If you are using a lot of XML data, for example, and extracting data from it, the chances are that your indexes will dwarf size of the original data. These indexes are quick to generate, yet SQL Server has no sense of their relative value and so includes them in the backup. Because databases aren’t functional until they are all pulled out from the backup, and recovery is completed, it means that the service is likely to be down for longer.
This is the safest way of doing it, but it means that, unless you are taking strategic advantage of filegroups with Enterprise edition, the database cannot function at all until everything is restored. (In Standard edition we can also take advantage of restoring one filegroup at a time, but we have two serious disadvantages: an object cannot span over more than one filegroup and the entire database has to become OFFLINE while the filegroup is being restored.)
To put it simply, could any database be more quickly restored if only the data and essential database objects were backed up, the rest being recreated via a DDL/DRI script?
To consider what opportunities there may be, let’s look into what objects there are in a database. Each database has some of the following:
And all of these objects are persisted on disk, except for the DMOs - which are in-memory objects containing dynamically collected system data and can be queried as if they were database tables or functions.
I mention the DMOs here because they are still very important beyond a SQL Server instance restart or database restore even though their data is not persisted on disk. It would be useful to have the database performance data at the time of the last backup if a disaster happens.
The question of cost vs. value
Even though all of these objects are the building blocks of a database, each object can be measured in three aspects:
So, let’s look at each one of them:
How do we backup each one of them?
As of the time of writing this article I am not aware of any tool or method for selective backup on a database object level. However, here are a few potential ways that I believe would really improve the real-world DBA’s working life and the speed of disaster-recovery:
In my previous article (“Designing Databases for Rapid Resilience”) I covered some of the benefits of partitioning and how it can help with the faster restore after a failure.
In reality, however, it is only the Enterprise edition which supports the splitting of the same object over multiple filegroups, which means that in the case of disaster, the filegroups can be restored in the order of importance.
In any other edition of SQL Server, we can store one object on one filegroup only, which takes care of the idea to restore certain objects first after a disaster has happened.
In either case, however, we cannot avoid the backing up of less important non-clustered indexes.
What this means is that we have to go through the I/O penalty of backing them up, and then sooner or later we will have to go through the I/O penalty of restoring them from a backup.
And when a disaster happens…
When a real disaster happens, we all hope that we have the most recent backups, that they have been tested and that they can be restored as fast as possible (ideally without any of the users or bosses experiencing any disruption).
In reality, if a disaster happens and part of the database is not available, what we can do is to backup all filegroups except for the damaged one.
Then the smart thing to do is to look in the cache to see if any data from the failed filegroup is still cached, so we can offload it to a temporary location.
Here is an example: if we have Table1 on UserFileGroup1 and if the disk where the UserFileGroup1 resides has failed, the chances are high for the data to be in cache if the data from Table1 has recently been worked with.
In this case we can query the data as if there was nothing wrong with the UserFileGroup1’s disk, and we can insert the queried data into a table residing on a different filegroup.
Of course, the chances of all the data being available in cache are slim, and they diminish as time passes by. This is why we should have a very smart and tested alert system and smartly designed and tested database backups.
Could a better way of restoring a database be used that has the strategy of restoring at least a limited ‘critical’ functionality more quickly and then allows full range of less vital services to be restored in background in an incremental way?
In versions of SQL Server other than Enterprise there are opportunities to design for rapid recovery. In any version of SQL Server, the possibility exists of creating database applications as a series of databases on the same instance that are backed up separately, so that the most vital one can be restored first, whilst the others, if damaged, are merely built from script with only static data, with their functionality disabled in software. Then, as each database is restored, its functionality can be restored. As well as requiring some clever scripting to automate the process, it cannot be achieved without planning and a careful analysis of the acceptable service level for each part of the application just as I described in the first part of this series.
To conclude
In conclusion, there are vitally important objects and not-so-important objects in every database and it would be very hard for a DBA to select only the relevant objects to be included in a backup; however, as described above, there are steps which can be taken to significantly minimize the impact of a database disaster.
As mentioned in the first part of the series, there are several ways to use smart database design to achieve great results; and as mentioned in this article, some ‘positive discrimination’ on an database object level could speed up the backup and restore processes, utilize system resources in a better way and most importantly - minimize the downtime of our database systems.
© Simple-Talk.com
Routing the ASP.NET Way
20 November 2012
by Dino Esposito
ASP.NET MVC is built on top of ASP.NET's HTTP handlers and ad hoc URLs. The process of routing a URL to the correct controller/action pair makes it far easier to create any website that plays a more versatile role than merely serving file-based pages.
The ASP.NET platform originally developed around the idea of serving requests for physical pages. This approach has worked for a few years, and still works today in the context of ASP.NET Web Forms. This was a useful pattern when web sites were created from individual file-based pages linked together to form a sitemap. Today, we still have such pages, but we also have to create pages by aggregating data from different endpoints to both the client and the server.
This led to a new requirement; HTTP-based endpoints that are capable of serving plain data which is mostly serialized to JSON strings. This, in turn, required more control over the format of the URL. The ASP.NET run-time environment has always provided a specific technology to let you call into resources identified by a specific URL. By writing an ad hoc HTTP handler, and binding it to a URL, you can use ASP.NET to merely execute code in response to a request rather than to serve physical files.
ASP.NET MVC is built on top of these two features—HTTP handlers and ad hoc URLs. More specifically, ASP.NET MVC encapsulates HTTP handlers and ad hoc URLs in its own framework and exposes to developers a new API that is centered on controllers and routes.
On the Way to Controllers
What happens exactly when a user’s request knocks on the door of IIS (Internet Information Service) ? As Figure 1 shows, any requests pass through the list of registered modules. One of the registered modules is the URL Routing module.
FIGURE 1. The URL Routing HTTP module in IIS
Figure 1 shows the registered modules in the order in which they are processed by IIS. The URL Routing module is towards the end of the chain. The URL routing module intercepts any requests for the application that could not be otherwise served by IIS. If the URL refers to a physical file (i.e., an ASPX file), the routing module ignores the request, unless otherwise configured. The request then falls down to the classic ASP.NET machinery to be processed as usual in terms of a page handler.
Otherwise, the URL routing module attempts to match the URL of the request to any of the application defined routes. If a match is found, the request goes into the ASP.NET MVC space. If no match is found then the request is likely to result in a HTTP 404.
The URL Routing module consumes information exposed by each ASP.NET MVC application—the list of URL patterns that the application recognizes and is ready to process. Each URL pattern is associated with a route within the application. A route is a way to tie together a URL pattern with a controller action. The routing module doesn’t do the whole work internally, however. It figures out whether the request is directed at one of the ASP.NET MVC applications and then directs it to a specific HTTP handler that is part of the ASP.NET MVC framework. This handler will then resolve the request in terms of an action on a controller class. Figure 2 is an overview of request processing in ASP.NET MVC.
FIGURE 2. Request processing in ASP.NET MVC
ASP.NET MVC Routes
In ASP.NET MVC, a route is the combination of a pattern-matching string that represents a recognized URL and a controller/action pair. All ASP.NET MVC applications that you create through the Visual Studio project template are equipped with at least the following default route:
routes.MapRoute(
"Default",
"{controller}/{action}/{id}",
new {
controller = "Home",
action = "Index",
id = UrlParameter.Optional
});
The default route is named “Default” in the first parameter. The default route catches any URLs that contains at most three segments. The first segment is assumed to be the name of the controller; the second segment is assumed to be the name of the action. The third segment is optional and if present is assumed to be the value for a parameter named Id. When the URL matches the pattern for the route, the ASP.NET MVC HTTP handler will process the URL to extract the name of the controller and action. No ASP.NET MVC application can run without routes.
A URL pattern-matching string may be ambiguous or unambiguous. In other words, it can be a string constant such as ‘/tv/channels’ or it can be a string expression such as ‘/tv/{channelId}’.
In the first example value, ‘/tv/channels’, there’s just one URL that matches the route. The controller and the action to execute are those specified as the third parameter of the MapRoute method:
routes.MapRoute(
"Default",
"/tv/channels",
new {
controller = "Tv",
action = "Channels",
id = UrlParameter.Optional
});
Most of the time, however, you deal with dynamic routes that incorporate one or more parameters. In the second example value, ‘/tv/{channelId}’ the route is matched by any URLs that contains “tv” followed by a token. Actual examples could be:
/tv/1/
tv/bbc1
The first token, ‘tv’, is considered to be a constant; the following token is taken to be a variable. A route parameter is a name enclosed in curly brackets { }. You can have multiple parameters in a route as long as they are separated by a constant or delimiter. The forward slash (/) character acts as a delimiter between the various parts of the route. The name of the parameter is the text that you indicate between brackets. In the routes that we considered so far, the controller that is used to resolve the request is indicated as a constant in the third parameter of the call to the MapRoute method.
ASP.NET MVC requires that, for each request, the application sets a value for two predefined parameters, the controller and action parameters. This can be done declaratively as well as programmatically. You do it declaratively by using the MapRoute method and/or using the controller and action parameters in the URL. The most common way of doing this is through the default route for an ASP.NET MVC application:
{controller}/{action}/{id}
The route contains three placeholders separated by the delimiter. A URL that matches the preceding route is the following:
/Customer/Edit/ALFKI
The controller parameter is matched to the string “Customer”; the action parameter is matched to the string “Edit”. Finally, the id parameter is matched to the string ALFKI. Subsequently, the ASP.NET MVC framework resolves the request executing the Edit method on the Customer controller passing the ALFKI value to the id argument. If the application doesn’t include a Customer Controller class with a method Editthat accepts an id argument then you will experience an exception.
The matching process is more sophisticated than it may seem at first. For example, the following URLs are matched too:
/
/Customer
/Customer/Edit
The first lacks all three parameters; the second only has the controller and action; the third lacks the ID parameter. Missing parameters can be filled with default values that you indicate as the last parameter of the MapRoute method.
Whilst the default route works, by itself, for most applications, you can add as many routes as you wish to your ASP.NET MVC application with as many parameters as you reckon appropriate. You can even remove the default route.
Defining Routes
An application should define its supported routes during the startup process. You typically add routes to the RouteTable.Routes system collection in the Application_Start handler in global.asax. A route is an instance of the Route class that you typically, but not necessarily, create through the handy MapRoute method.
The MapRoute method offers a variety of overloads and works well most of the time. It doesn’t, however, let you configure every possible aspect of a route object. If there’s something that you need to set on a route that MapRoute doesn’t support, then you might want to resort to the following code:
var route = new Route(...);
RouteTable.Routes.Add("YourRoute", route);
You first create a new Route object setting all of the properties that the object offers and that you need to set. When done, you just add the Route object to the system Routes collection.
A route is not simply characterized by name, URL pattern and default values that you usually set via the MapRoute helper. A route may also have constraints, data tokens, and a custom route handler: This makes for less frequent but more interesting use cases. Let’s expand on this then.
Route Constraints
When you define a route parameter, you first focus on the name and the position of it within the URL string. The next concern, though, is about the type of data. Let’s consider the two examples below:
/tv/show/1
/tv/show/bbc1
Both are valid URLs for the following route: tv/{channelId}. This route postulates the availability of a controller like this one:
public class TvController
{
public ActionResult Show(int channelId)
{ ... }
}
What data type you expect the channel ID to be? Should it be an integer, a string or possibly both? With the code above, if the URL matches the channelId parameter to a string then the controller code is likely to throw an exception when a string like “bbc1” is cast to an integer. In situations like this, you might want to consider adding a constraint to the route. Here’s how:
routes.MapRoute(
"Tv",
"Tv/{channelId}",
new {controller="Tv", action="Show"},
new {channelId = @"\d+"}
);
The channelId parameter is bound to a regular expression that selects only digits. In this way, a URL in which the token following “Tv” is a string just doesn’t match.
If a regular expression is not enough for the logic you want to express, you can always create a route constraint class. A route constraint class is a class that implements theIRouteConstraint interface:
public class NumericRouteConstraint : IRouteConstraint
{
bool Match(HttpContextBase httpContext,
Route route,
string parameterName,
RouteValueDictionary values,
RouteDirection routeDirection)
{
...
}
}
The interface has just one method, the Match method, which returns a Boolean to indicate whether the URL matches or not. You register a route constraint class as below:
routes.MapRoute(
"Tv",
"Tv/{channelId}",
new {controller="Tv", action="Show"},
new {channelId = new NumericRouteConstraint()}
);
The route constraint class receives a lot of parameters and gives you the chance of examining nearly every aspect of the request.
Route Data Tokens
Sometimes you want to associate with a given route some additional values that are not used to determine whether a route matches a pattern. You can do this by using the DataTokensdictionary.
var route = new Route(...);
route.DataTokens = new RouteValueDictionary { { "format", "short" } };
RouteTable.Routes.Add("YourRoute", route);
Values in theDataTokens dictionary are passed to the route handler and can be used to make decisions within the route handler as to the controller or action to employ.
Custom Route Handlers
The route handler is the object that processes any requests that match a given route. The sole purpose of a route handler is to return the HTTP handler that will actually serve any matching request. Within the boundaries of a route handler, though, you can programmatically decide about the controller that will serve the request. If you need to determine from run time conditions which controller, or method, should be in charge of a given request, then a route handler is the way to go.
A route handler is a class that implements theIRouteHandler interface. The interface is defined as below:
public interface IRouteHandler
{
IHttpHandler GetHttpHandler(RequestContext requestContext);
}
The ASP.NET MVC framework doesn’t include that many route handlers, and I have never needed to create an additional one for a production web site. Yet, the extensibility point exists for you to take advantage of it in case you need to do so.
Preventing Routing for Certain URLs
The ASP.NET URL routing module doesn’t limit you to maintain a white-list of acceptable URL patterns. It also allows you to keep certain URLs off the routing mechanism. You can prevent the routing system from handling certain URLs doing as below:
public static void RegisterRoutes(RouteCollection routes)
{
routes.IgnoreRoute("{resource}.axd");
...
}
IgnoreRoute is a method on the RouteTable.Routes object; all it does is associate a special route handler—the StopRoutingHandler class—to a given route. All URLs matching the rule will then be ignored by ASP.NET MVC.
Summary
Routing is a powerful mechanism that plays a key role in modern ASP.NET development. By modern ASP.NET development I mean ASP.NET development that goes beyond the plain mapping of URLs to physical server pages. Born as part of the ASP.NET MVC infrastructure, routing is now associated with ASP.NET Web Forms and Web API. Any ASP.NET developer can’t ignore it.
© Simple-Talk.com
Jeff Foster
I'm head of software engineering at Red Gate. I'm a big fan of functional languages, particularly Haskell.
Learn Many Languages
Published 15 November 2012 1:43 pm
My previous blog, Deliberate Practice, discussed the need for developers to “sharpen their pencil” continually, by setting aside time to learn how to tackle problems in different ways.
However, the Sapir-Whorf hypothesis, a contested and somewhat-controversial concept from language theory, seems to hold reasonably true when applied to programming languages. It states that:
“The structure of a language affects the ways in which its speakers conceptualize their world.”
If you’re constrained by a single programming language, the one that dominates your day job, then you only have the tools of that language at your disposal to think about and solve a problem. For example, if you’ve only ever worked with Java, you would never think of passing a function to a method.
A good developer needs to learn many languages. You may never deploy them in production, you may never ship code with them, but by learning a new language, you’ll have new ideas that will transfer to your current “day-job” language.
With the abundant choices in programming languages, how does one choose which to learn? Alan Perlis sums it up best.
“A language that doesn‘t affect the way you think about programming is not worth knowing“
With that in mind, here’s a selection of languages that I think are worth learning and that have certainly changed the way I think about tackling programming problems.
Clojure
Clojure is a Lisp-based language running on the Java Virtual Machine. The unique property of Lisp is homoiconicity, which means that a Lisp program is a Lisp data structure, and vice-versa. Since we can treat Lisp programs as Lisp data structures, we can write our code generation in the same style as our code. This gives Lisp a uniquely powerful macro system, and makes it ideal for implementing domain specific languages. Clojure also makes software transactional memory a first-class citizen, giving us a new approach to concurrency and dealing with the problems of shared state.
Haskell
Haskell is a strongly typed, functional programming language. Haskell’s type system is far richer than C# or Java, and allows us to push more of our application logic to compile-time safety. If it compiles, it usually works! Haskell is also a lazy language – we can work with infinite data structures. For example, in a board game we can generate the complete game tree, even if there are billions of possibilities, because the values are computed only as they are needed.
Erlang
Erlang is a functional language with a strong emphasis on reliability. Erlang’s approach to concurrency uses message passing instead of shared variables, with strong support from both the language itself and the virtual machine. Processes are extremely lightweight, and garbage collection doesn’t require all processes to be paused at the same time, making it feasible for a single program to use millions of processes at once, all without the mental overhead of managing shared state.
The Benefits of Multilingualism
By studying new languages, even if you won’t ever get the chance to use them in production, you will find yourself open to new ideas and ways of coding in your main language. For example, studying Haskell has taught me that you can do so much more with types and has changed my programming style in C#. A type represents some state a program should have, and a type should not be able to represent an invalid state. I often find myself refactoring methods like this"
void SomeMethod(bool doThis, bool doThat) {
if (!(doThis ^ doThat))
throw new ArgumentException(“At least one arg should be trueâ€);
if (doThis) DoThis();
if (doThat) DoThat();
}
"into a type-based solution, like this:
enum Action { DoThis, DoThat, Both };
void SomeMethod(Action action) {
if (action == Action.DoThis || action == Action.Both)
DoThis();
if (action == Action.DoThat || action == Action.Both)
DoThat();
}
At this point, I’ve removed the runtime exception in favor of a compile-time check.
This is a trivial example, but is just one of many ideas that I’ve taken from one language and implemented in another.
Leave a Reply
You must be logged in to post a comment.
Table of Contents
Fixing Gatekeeper Row Cardinality Estimate Issues
Database Deployment: The Bits - Getting Data In
SSAS Compare version 1.0 released
Report Building 3.0: Adding Maps to Your Reports
Coping with infrastructure upgrades
Handling Backups for Rapid Resilience